Shiv Chhatrapati Shikshan Sanstha's

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Structure and Curriculum of Four Year
Multidisciplinary Degree (Honors) Programme with
Multiple Entry and Exit option

Undergraduate Programme of Science and Technology B.Sc. (Honors) in Biotechnology

Board of Studies

in

Biotechnology

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

[UG II Year]

Rajarshi Shahu Mahavidyalaya

w.e.f. June, 2024

(In Accordance with NEP-2020)

CERTIFICATE

I hereby certify that the documents attached are the Bonafide copies of the Curriculum of B.Sc. (Honors) in Biotechnology Programme to be effective from the Academic Year 2024-25.

Date: 16/04/2024

Place: Latur

(Dr.Sachin Kulkarni)

Chairperson
Board of Studies in Biotechnology
Rajarshi Shahu Mahavidyalaya, Latur
(Autonomous)

शिव छत्रपती शिक्षण संस्था लात्र

।। आरोह तमसो ज्योतिः।।

Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

(Autonomous)

Members of Board of Studies in the Subject Biotechnology Under the Faculty of Science and Technology

Sr. No.	Name	Designation	In position
1	Dr. Sachin S. Kulkarni	Chairperson	HoD
	Head, Department of Biotechnology,	•	
	Rajarshi Shahu Mahavidyalaya, Latur		
	(Autonomous)		
2	Prof. Tukaram. A. Kadam	Member	V.C. Nominee
	Professor, School of Life Sciences SRTMU,		
	Nanded.	26	
3	Dr. Rahul. P. Bhagat	Member	Academic Council Nominee
	Asst. Professor, Department of		
	Biotechnology, Govt. Institute of Science,		
4	Aurangabad (Autonomous)	Manalaga	Academic Council Nominee
4	Dr. Rajesh M. Jorgewad Asst. Professor, Department of	Member	Academic Council Nominee
	Biotechnology and Bioengineering, KIT		
	college, Kolhapur (Autonomous)		
5	Dr. Gunderao. H. Kathwate	Member	Expert from outside for
	Asst. Professor, Dept. of Biotech.	- Member	Special Course
	S. P. P. U. Pune		opecial de arse
6	Mr. Abhay. M. Desai	Member	Expert from Industry
	Wockhardt, Au <mark>rangabad</mark>		
7	Dr. Santosh Nar <mark>wade</mark>	Member	P.G. Alumni
	Serum Institute Pv <mark>t.Ltd. Pu</mark> ne	रिव छः	1पता
8	Dr. Manisha. A. Dh <mark>otre</mark>	Member	Faculty Member
9	Mr. Udaybhanu. P. Sirdeshm <mark>ukh</mark>	Member	Faculty Member
10	Dr. Ravindra. B. Ade	Member	Faculty Member
11	Dr. Sanghapal. S. Kshirsagar	Member	Faculty Member
12	Mr. Suraj. <mark>D. Kadam</mark>	Member	Faculty Member
13	Mr. Akash <mark>. J. Waghmare</mark>	Member	Faculty Member
14	Miss. Swati G. Swami	Member	Faculty Member
15	Mr. Sanket M. Bansode	Member	Faculty Member
16	Miss. Karuna S. Komatwar	Member	Faculty Member
17	Dr. Kakasaheb S. Raut	Member	Member from same Faculty

From the Desk of the Chairperson...

Biotechnology as a subject is a highly interdisciplinary that combines biological sciences with engineering technologies to manipulate living organisms and biological systems to produce products that advances healthcare, medicine, agriculture, food, pharmaceuticals and environment. At its simplest, biotechnology is technology based on biology - which harnesses cellular and bimolecular processes to develop technologies and products that help to improve our lives and health of our planet.

Taking into consideration of the importance of Biotechnology, Rajarshi Shahu Mahavidyalaya, Latur (Autonomous), have taken an initiative to introduce a new emerging field as an undergraduate Programme in biotechnology under the faculty of science. B. Sc. Biotechnology is a Three-year graduate degree program which is started in the academic year 2004-05 followed by the postgraduate program started in academic year 2006-07.

National Education Policy (NEP) 2020 recognizes the relevance of biotechnology in the education system due to its interdisciplinary nature, potential for research and innovation, and its alignment with the development of 21st-century skills. By integrating biotechnology into the curriculum, the policy aims to prepare students for the challenges and opportunities of a rapidly advancing biotechnology driven world.

NEP-2020 has conceptualized the idea to develop well rounded competent individuals for making the nation a self-reliant and global leader. In the same spirit, we at Department of Biotechnology, have developed a curriculum framework to encompass the goals of NEP 2020. In the overall curriculum we have incorporated choice of courses of study, creating academic pathways having constructive combinations with multiple entry and exit points as well as focus on experiential learning for students by introducing multidisciplinary, skill enhancement, vocational courses along generic elective(s) and course based on Indian knowledge system and actual Hand's on training in the recent and trending areas of Biotechnology.

With reference to global changes occurring in higher education in various national and foreign universities, the newly designed syllabi of B.Sc. Biotechnology as per NEP 2020 guidelines are effectively implemented from June, 2023. The committee members of Board of Studies in Biotechnology also took the local need and employability of graduate students into consideration while framing the given curriculum, keeping in view of the guidelines given in the University Grants Commission, New Delhi.

By aligning curriculum development, pedagogy, interdisciplinary connections, research opportunities, industry collaborations, teacher training, and available infrastructure with the institute, the department of biotechnology plans to integrate students with a comprehensive understanding of biotechnology, foster critical thinking and research skills, and prepare them for future careers in the field.

(Dr. Sachin Kulkarni)

Chairperson
Board of Studies in Biotechnology

(Autonomous)

Index

Sr. No.	Content	Page No.
1	Structure Framework of UG Second Year	1
2	Abbreviations	2
3	UG Program Outcomes	3
4	Programme Specific Outcomes	4
5	Courses and Credits	5
6	i) DSC V: Immunology and Vir <mark>ology</mark>	7
	ii) DSC VI: Metabolis <mark>m</mark>	11
	i)DSM-I : Applied Microbiology	16
	iii) DSC-VII: Molecular Biology	22
	iv) DSC-VIII: Biocatalysis & Enzyme Engineering	27
	ii) DSM-II : Clinical Microbiology	33
7	Extra Credit Activities	38
8	Examination Framework	40

(Autonomous)

Faculty of Science and Technology

Structure for Four Year Multidisciplinary Undergraduate Degree Programme in Biotechnology Multiple Entry and Exit (In accordance with NEP-2020)

Year		Major				VSC/			Credi	
& Leve	Sem	DSC	DS E	Mino r	GE/OE	SEC A	AEC/ VEC	OJT,FP,CEP, RP	t per Sem.	Cum./Cr. per exit
1	2	3		4	5	6	7	8	9	10
	III	DSC V: 04	NA	Mino	GE- <mark>III</mark> :	SEC-III:	AEC-	CC-I: 02 Cr.	22	
		Cr.		r I:04	02 <mark>Cr.</mark>	02 Cr.	III:02	(SSC)		
		DSC VI:		Cr.			Cr.			
		04 Cr.						Field		
								Project: 02		00 C**
								Cr.		88 Cr. UG
II	IV	DSC VII:	NA	Mi <mark>no</mark>	GE- <mark>IV</mark> :	SEC-IV:	AEC-	CC-II: 02 Cr.	22	Diploma
5.0		04 Cr.		r	02 Cr.	02 Cr.	IV: 02	(SSC)		Dipionia
		DSC VIII:		II:04						
		04 Cr.		Cr.				Field		
								Project: 02		
								Cr		
	Cum.	16	-	08	04	04	04	08	44	
	Cr.			7		15	ाव छ	त्रपती		

Exit Option: Award of UG Diploma in Major with 88Credits and Additional 04 Credits Core NSQF

Course/Internship or continue with Major and Minor

शि आरोह तमसो ज्योतिः।। Rajarshi Shahu Mahavidyalaya,

Abbreviations:

1. DSC : Discipline Specific Core (Major)

2. DSE : Discipline Specific Elective (Major)

3. DSM : Discipline Specific Minor

4. GE/OE: Generic/Open Elective

5. VSEC : Vocational Skill and Skill Enhancement Course

6. VSC : Vocational Skill Courses

7. SEC : Skill Enhancement Course

8. AEC : Ability Enhancement Course

9. MIL: Modern Indian Languages

10. IKS : Indian Knowledge System

11. FSRCE: Fostering Social Responsibility & Community Engagement

12. VEC : Value Education Courses

13. OJT : On Job Training

14. FP : Field Projects

15. CEP : Community Engagement and Service

16. CC : Co-Curricular Courses

17. RP : Research Project/Dissertation

18. SES : Shahu Extension Services

Rajarshi Shahu Mahavidyalaya Latur (Autonomous)

(Autonomous)

Faculty of Science & Technology

	Programme Outcomes (POs) for B.Sc. Programme		
PO1	Disciplinary Knowledge		
	Comprehensive knowledge of science subjects which constitute the		
	graduate programme and execution of scientific knowledge in the		
	specific area.		
PO2	Scientific Outlook		
	The qualities of a science graduate such as observation, precision,		
	analytical mind, logical t <mark>hinking, cl</mark> arity of thought and expression and		
	systematic approach.		
PO3	Self-Directed Life-long Learning		
	Ability to appear for various competitive examinations or choose the		
	post graduate programme or other related programme of their choice.		
PO4	Research Skills		
	Functional know <mark>led</mark> ge an <mark>d applications of instr</mark> umentation and		
	laboratory techn <mark>ique</mark> s to do independent experiments, interpret the		
	results and dev <mark>elop research ethos.</mark>		
P05	Problem Solving Skills		
	Analytical and logical skills and critical thinking to extract information		
	from qualitative and quantitative data, formulate and solve problems in		
	a systematic and rational manner.		
P06	Professional Competence and Ethics		
	Aptitude and skills to perform the jobs in diverse fields such as science,		
	engineering, industries, survey, education, banking, development and		
	plannin <mark>g, business</mark> , public service, self-business etc. with human		
	rationale <mark>and mor</mark> al valu <mark>es.</mark>		

शिक्षण संस्था

Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

Progr	ramme Specific Outcomes (PSOs) for B.Sc. Biotechnology (Honors)		
PSO No.	Upon completion of this programme, the students will be able to -		
PSO1	Prepare the students with the skills, ethics, aptitude and human values of		
	practicing the science in day-to-day life		
PSO2	Promote the interdisciplinary research in biotechnology for tackling the		
	future problems threatening the society		
PSO3	Equip the students with the abilities required to attain self-sufficiency and		
	life sustainability by imp <mark>arting ent</mark> repreneurial skills		
PSO4	Design process equipment, plants, biosensors and recombinant molecules		
	for biotechnological and a <mark>llied processes</mark>		
PSO5	Identify measur <mark>es</mark> for e <mark>nergy, environment,</mark> health, safety and society		
	following ethica <mark>l pri</mark> ncip <mark>les and apply the kno</mark> wledge of basic science and		
	engineering to solve complex biotechnological problems		
PSO6	Isolate, purif <mark>y and characterize biological samples us</mark> ing sophisticated		
	analytical experimental techniques		
PSO7	Apply modern software tools including prediction and modeling methods		
	on biological databases to identify issues in biomedical problems		
PSO8	Assess personal, product and environmental safety, intellectual property		
	and social responsibilities related to modern biotechnological research and		
	development		

शि आरोह तमसो ज्योतिः।। Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

(Autonomous)

Department of Biotechnology

B.Sc. (Honors) in Biotechnology

Year & Level	Semester	Course Code	Course Title	Credits	No. of Hrs.
		201BIO3101 (DSC-V)	Immunology and Virology	03	45
		201BIO3103	L <mark>ab Co</mark> urse-V	01	30
		201BIO3102 (DSC-VI)	Metabolism	03	45
		201BIO3104	Lab Course-VI	01	30
	III	201BI03301 (Minor I)	Applied Microbiology	03	45
		201BI03302	L <mark>ab Course-Minor</mark> I	01	30
		(GE-III)	Fr <mark>om Basket</mark>	02	30
		(SEC <mark>-III</mark>)	Fr <mark>om Basket</mark>	02	30
		AEC- <mark>III</mark>	From Basket	02	30
		CC- <mark>I</mark>		02	60
		AIPC/ <mark>OJT-I</mark>	Field Project	02	60
II		Total C		22	
5.0		201BIO4101 (DSC-VII)	Molecular Biology	03	45
		201BIO4103	Lab Course-VII	01	30
		201BIO4102 (DSC-VIII)	Biocatalysis & Enzyme Engineering	03	45
		201BIO4104	Lab Course-VIII	01	30
	IV	201BIO4301 (Minor II)	Clinical Microbiology	03	45
		2 <mark>01B</mark> IO4302	Lab Course-Minor II	01	30
		(GE-IV)	From Basket	02	30
		(SEC-IV)	From Basket	02	30
		(AEC-III)	From Basket	02	30
		CC-II	4 5 2	02	60
		AIPC/OJT-I Total C	Mini project/ Field Project	02	60
		22			
	Total (Credits (Semeste	er III & IV)		44

Latur (Autonomous)

Semester - III

।। आरोह तमसो ज्योतिः।।

Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

(Autonomous)

Department of Biotechnology

Course Type: DSC-V

Course Title: Immunology and Virology

Course Code : 201BIO3101

Credits : 03 Max. Marks: 75 Lectures: 45 Hrs.

Learning Objectives:

- LO1 To understand Innate and Adaptive immune response.
- LO2 To understand the variation in structure of antibody and their biological significance.
- LO3 To understand biological role of the cells of Immune system.
- LO4 To understand mechanism of T and B cell signalling.
- LO5 To know Affinity and avidity Immunological reactions
- LO6 To study the working mechanism of primary, secondary & tertiary lymphoid organs.
- LO7 To get the knowledge about the discovery & structure of viruses.
- LO8 To learn about the lytic and lysogenic cycle of bacteriophage.

Course Outcomes:

After completion of course the student will be able to-

- CP1 Extend comprehensive understanding of the fundamental concepts in immunology, including innate and adaptive immunity, antigen recognition, and immune cell interactions.
- CO2 Understand the functions and biological role of cells and organs of the immune system.
- CO3 Understand the basic virology principles, including viral structure, classification, replication cycles.
- CO4 Understand the epitopes, paratopes, haptens, adjuvant and its types.
- CO5 Acquire the knowledge about life cycle & replication of viruses.
- CO6 Adapt the information about general structure of antibody molecule
- CO7 Acquaint the knowledge of vaccines and antiviral drugs.
- CO8 Integrate knowledge from immunology and virology to understand the immune responses to viral infections, including viral evasion strategies and immunemediated pathology.

Unit No.	Title of Unit & Contents	Hrs.
I	Overview of Immunology	11
	1. Historical perspective	
	2. Innate and Adaptive Immune response.	
	3. Hematopoiesis	
	4. Cells of Immune system and their biological role.	
	5. Humoral and cell mediated Immunity (T and B cell	
	signalling)	
	6. The Primary and Secondary lymphoid organs.	
	7. Tertiary Lymphoid Tissues	
	Unit Outcomes:	

Unit No.	Title of Unit & Contents	Hrs.
	UO1 Extend understanding of the mechanisms of T and B co	ell
	signalling.	
	UO2 Describe the biological role of cells of immune system.	
II	Basics of Immunology	13
	1. Antigen: Antigens- General properties & types	
	2. Factors that influence antigenicity	
	3. Epitopes, Paratopes, Haptens, adjuvant and its types.	
	4. Antibody: General Structure of antibody molecule	
	5. Antibodies- variation in structure of antibody and their	
	biological significance.	
	6. Antibody Antigen interactions: Strength of Antigen-	
	Antibody Interactions 7. Ka and Kd with its importance	
	7. Ka and Kd with its importance8. Affinity and avidity Immunological reactions:	
	Precipitation and Ag <mark>glutination</mark> reactions	
	9. ELISA	
	Unit Outcomes:	
	U01 Understand the variation in structure of antibody and the	ir
	biological significance.	,11
	U02 Understand the factors influencing antigenicity.	
III	Introduction to Viruses	10
	1. Viruses and their importance.	
	2. Discovery of viruses.	
	3. Structure of virus: viral nucleic acid, nucleocapsid, envelope.	
	4. Variatio <mark>n in structure of viruses.</mark>	
	5. Viroids and Prions.	
	6. Nomenclature and Classification of viruses.	
	Unit Outcomes:	
	UO 1. Understand the structure of virus: viral nucleic aci	id,
	nucleocapsid, envelope. UO 2. Describes the nnomenclature and cclassification of viruses.	
IV		11
IV	Life Cycle of Viruses 1. Structure of animal virus (HIV)	11
	2. Structure of plant virus (TMV)	
	3. Life cycle and replication of DNA virus	
	4. Life cycle and replication of RNA viruses	
	5. Life cycle and replication of Retrovirus	
	6. Bacteriophages (lytic and lysogenic cycle)	
	7. Vaccines	
	8. Antiviral drugs.	
	Unit Outcomes:	
	U01 Understand the life cycle and replication of different types	of
	viruses.	
	UO2 Understand the structure of animal and plant virus.	

Learning Resources:

- 1. Cellular and Molecular Immunology, Abul K. Abbas, Andrew H. Lichtman, Shiv Pillai, 9th Edition, Elsevier; 2017.
- 2. Kuby Immunology, Judy Owen, Jenni Punt, Sharon Stranford, 8th Edition, W.H. Freeman & Company; 2018.
- 3. Virology: Principles and Applications, John Carter, Venetia Saunders, 1st Edition, Wiley; 2007.
- 4. Principles of Virology" by S.J. Flint, L.W. Enquist, V.R. Racaniello, A.M. Skalka, 4th Edition, ASM Press; 2015.
- 5. The Immune System" by Peter Parham, 4th Edition, Garland Science; 2014.
- 6. Kuby Immunology, Thomas J. Kindt Richard A. Goldsby, Barbara A. Osborne, 4th Ed., W. H. Freeman & Company, 2000.
- 7. Vaccines, Stanley A. Plotkin, Walter A. Orenstein, Paul A. Offit, 7th Edition, Elsevier; 2017.
- 8. Kuby Immunology, Thomas J. Kindt Richard A. Goldsby, Barbara A. Osborne, 6th Ed., W.H. Freeman & Company, 2000.
- 9. Roitt's Essential Immunology, Deives, Martin, Burton, Roitt., 11th ed. Wiley Blackwell publications, 2017.
- 10. Virology Principles and Applications, John B. Carter and Venetia A. Saunders, John Wiley & Sons Ltd., 2013.

(Autonomous)

Department of Biotechnology

Course Type: Lab Course V

Course Title: Lab Course (Based on DSC-V)

Course Code : 201BIO3103

Credits : 01 Max. Marks: 50 Hours: 30

Leaning Objectives:

LO1 To study tools and technical skills in the field of Immunology and Virology.

- LO2 To provide hands on approach for different immunodiagnostic techniques.
- LO3 To provide hands on approach on different basic techniques of virus isolation.
- LO4 To study antigen antibody interactions.
- LO5 To train students with cell proliferation assay
- LO6 To provide skills in observation of stem cell through permanent slide.

Course Outcomes:

After completion of course the student will be able to-

- CO1 Perform agglutination tests accurately and interpret results to identify antigenantibody reactions
- CO2 Interpret precipitation patterns to determine antigen-antibody interactions and relative antigen concentrations
- CO3 Perform various methods of virus isolation.
- CO4 Perform radial immun<mark>odiffusion assays to quantify a</mark>ntigen or antibody levels in samples.
- CO5 Gain practical experience in observing lymphoid organs under the microscope.
- CO6 Learn techniques for isolating bacteriophages (viruses that infect bacteria) from environmental samples such as sewage.
- CO7 Acquaint the knowledge about principle and components of the enzyme-linked immunosorbent assay.

Practical No.	Unit
1	Agglutination reaction
2	Ouchterlony Double Diffusion reaction
3	Radial Immunodiff <mark>usion</mark> reaction.
4	Preparation of Peripheral blood smear
5	Identification of Blood cells
6	Differential leucocyte count
7	Microscopic observation of lymphoid organs
8	To perform Widal test
9	To perform VDRL test
10	Demonstration of ELISA.
11	Isolation of Bacteriophages from sewage

N.B.: Any Ten Practicals from above.

(Autonomous)

Department of Biotechnology

Course Type: DSC-VI Course Title: Metabolism Course Code: 201BI03102

Credits: 03 Max. Marks: 75 Lectures: 45 Hrs.

Learning Objectives:

- LO1 To understand the fundamental concepts of metabolism
- LO2 To describe the processes involved in aerobic and anaerobic respiration, including glycolysis, Krebs cycle, and electron transport chain.
- LO3 To explain the regulation mechanisms governing key metabolic pathways.
- LO4 To identify the different types of photosynthetic pigments and their roles in light absorption.
- LO5 To outline the stages of photosynthesis, including light reactions and dark reactions.
- LO6 To analyze carbohydrate metabolism pathways.
- LO7 To describe lipid metabolism processes including fatty acid synthesis, storage, and oxidation.
- LO8 To explore amino acid and nucleotide metabolism, covering biodegradation, biosynthesis, and associated disorders.

Course Outcomes:

After completion of the course, the student will be able to-

- CO1 Demonstrate a comprehensive understanding of metabolic processes, distinguishing between catabolism and anabolism.
- CO2 Apply knowledge of aerobic and anaerobic respiration pathways to explain energy production mechanisms in cells.
- CO3 Evaluate the regulatory mechanisms controlling metabolic pathways to maintain cellular homeostasis.
- CO4 Analyze the different stages of photosynthesis and their contributions to carbon fixation and energy production.
- CO5 Interpret carbohydrate metabolism pathways and their significance in energy storage and release.
- CO6 Assess lipid metabolism processes, including fatty acid synthesis and oxidation, in the context of cellular energy management.
- CO7 Evaluate the role of amino acid metabolism in protein synthesis, cellular function, and the occurrence of metabolic disorders.
- CO8 Apply knowledge of nucleotide metabolism to explain drug mechanisms and develop therapeutic interventions.

Unit No.	Title of Unit & Contents		
I	Metabolism and Respiration	11	
	1. Overview of metabolism: catabolism and anabolism		
	2. Glycolysis and regulation		
	3. Krebs cycle and regulation		

Unit No.		Title of Unit & Contents	Hrs.
	4.	Electron Transport Chain and inhibitors	
	5.	Chemiosmotic theory and ATP synthase	
	6.	Anaerobic Respiration: Alcohol and Lactic acid Fermentation	
	7.	Cori cycle	
	Unit (Outcomes:	
	U01	Differentiate between catabolic and anabolic pathways,	
		illustrating their roles in energy production and molecule	
	1100	synthesis.	
	U02	Discuss the significance of maintaining metabolic balance for	
		cellular homeostasis and adaptation to changing environmental	
**	DI .	conditions.	4.4
II		osynthesis	11
	1.	Photosynthetic pigments and absorption spectra	
	2.	Photosynthetic units and pigment systems	
	3.	Cyclic and non-cyclic photophosphorylation	
	4. 5.	Carbon fixation Cycle	
		C2 Cycle, C4 cycle and CAM pathway	
	6.	Starch and sucrose synthesis	
	UO1	Outcome: Outline the stages of photosynthesis, including light reactions	
	001	and dark reactions, and their contributions to energy	
		conversion and carbon assimilation.	
	U02	Evaluate the integration of photosynthetic pathways in	
	002	different plant species and their adaptations to varying	
		environmental conditions.	
III	Carbo	ohydrate and Lipid Metabolism	12
111	1.	Pathways: Glyoxylate, Pentose Phosphate, Entner-Doudoroff	14
	2.	Carbohydrate metabolism: Gluconeogenesis, Glycogen	
		Metabolism	
	3.	Lipid metabolism: Synthesis and storage of TAG, Biosynthesis	
		and oxidation of fatty acids.	
	4.	Ketone bodies	
	Unit	Outcomes:	
	U01	Investigate carbohydrate metabolism pathways and	
		highlighting their roles in carbon utilization and energy	
		production.	
	UO2	Examine lipid metabolism processes and elucidate their roles in	
		energy storage, membrane structure, and signaling.	
IV	Amin	o Acid and Nucleotide Metabolism	11
IV	Amin 1.	Amino acid Metabolism:	11
IV		Amino acid Metabolism:	11
IV		Amino acid Metabolism: •Biodegradation of amino acids	11
IV		Amino acid Metabolism:	11

Unit No.		Title of Unit & Contents	Hrs.
	2.	Nucleotide metabolism:	
		 Nucleotide Biosynthesis (De-Novo and Salvage pathways) 	
		Nucleotide Degradation	
	Unit	Outcomes:	
	U01	Investigate the biodegradation and biosynthesis of amino acids	
		and their roles in protein turnover and nitrogen balance.	
	U02	Examine nucleotide synthesis pathways and analyze	
		nucleotide degradation pathways.	

Learning Resources:

- 1. Lehninger Principles of Biochemistry, David L. Nelson, Michael M. Cox, Albert L. Lehninger, 5th Edition, W. H. Freeman and Company, New York, 2008.
- 2. Biochemistry, Donald Voet, Judith G. Voet, 4th Edition, John Wiley & Sons, 2011.
- 3. Life Sciences, Pranav Kumar & Usha Mina, Pathfinder publication, 8th Edition, 2023.
- 4. Fundamentals of Biochemistry, J. L. Jain, Sunjay Jain, Nithin Jain, S. Chand & Co Ltd, 2008.
- 5. A Textbook of Biochemistry, E.S. West, W.R. Todd, H.S. Mason, J.T. van Bruggen, Oxford and IBH Publishing Co., New Delhi, 1974.
- 6. Harper's Biochemistry, Robert K. Murray, Daryl K. Granner, Peter A. Mayes, Victor W. Rodwell, 25th Revised edition, Appleton & Lange, 1999.
- 7. Principles of Biochemistry, Geoffrey L. Zubay, William W. Parson, Dennis E. Vance, McGraw-Hill Higher Education, 1995.
- 8. Biochemistry, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto, Lubert Stryer, 8th Edition, W. H. Freeman & Co., 2015.
- 9. Plant Biochemistry, P. M. Dey, J. B. Harborne, Elsevier, 1997.
- 10. Metabolic Pathways, David Greenberg, Elsevier Science, 2012.

१। आरोह तमसो ज्योतिः।। Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

(Autonomous)

Department of Biotechnology

Course Type: Lab Course VI

Course Title: Lab Course (Based on DSC-VI)

Course Code : 201BIO3104

Credits : 01 Max. Marks: 50 Hours: 30

Learning Objectives

- LO1 To Understand the principles and procedures involved in fatty acid titration.
- LO2 To identify the significance of ketone bodies and learn the methods for their estimation.
- LO3 To gain proficiency in determining urinary titrable acidity and its relevance in clinical assessment.
- LO4 To learn the technique for estimating urinary creatinine and its application in renal function evaluation.
- LO5 To familiarize with the assay protocol for measurement and its clinical implications.
- LO6 To master the Zak and Henley's method for total serum cholesterol and Van de Bergh reaction for serum Bilirubin estimation.

Course outcomes

After completion of the course, the student will be able to-

- CO1 Perform fatty acid titration accurately, demonstrating competence in laboratory techniques for lipid analysis.
- CO2 Develop the skills to estimate ketone bodies in biological samples, interpreting results for diagnostic purposes in conditions like diabetic ketoacidosis.
- CO3 Proficient in estimating urinary creatinine levels, enabling assessment of renal function and adjustment of drug dosages.
- CO4 Capable of measuring acid phosphatase enzyme activity, applying the knowledge in diagnosing conditions related to bone and prostate health.
- Understand the assay for β -amylase enzyme activity, correlating the results with pancreatic function and carbohydrate metabolism.
- CO6 Gain expertise in the estimation of serum bilirubin and serum cholesterol, aiding in the diagnosis and monitoring of health issues.

Practical No.	Unit
1	To Perform Fatty Acid Titration
2	Estimation of Ketone Bodies
3	Determination of Urinary Titrable acidity
4	Estimation of Urinary Creatinine
5	Estimation of Enzyme activity of Acid Phosphatase
6	Estimation of Enzyme activity of β-amylase
7	Estimation of Total Serum Cholesterol by Zak and Henley's method
8	Determination of Serum Bilirubin by Van de Bergh reaction
9	Determination of Urease Activity

10	Determination of Lipase Activity
11	Determination of Lysine decarboxylase and Ornithine decarboxylase activity
12	Solution of Problems in Biochemistry and Metabolism

N.B.: Any Ten practical from above.

(Autonomous) Department of Biotechnology

Course Type: DSM I

Course Title: Applied Microbiology

Course Code: 201BIO3301

Credits : 03 Max. Marks: 75 Lectures: 45 Hrs.

Learning Objectives:

- LO1 To create awareness about microorganism which is exploited in industrial process, product development it's beneficial as well as harmful aspect and study of applied areas.
- LO2 To provide the information on new approaches in microorganism's exploitation.
- LO3 To know the technical knowhow about the soil, water and air microorganism along with the microbe which is disease causing and beneficial and their activities for recycling and sustainability
- LO4 To inculcate the new approaches to direct the issues related to research in applied microbiology.
- LO5 To acquaint the knowledge of role of microorganism in food processes
- LO6 To comprehend the significance of index organism
- LO7 To explain biogeochemical cycles.
- LO8 To explain water borne, air borne and food borne diseases.

Course Outcomes:

After completion of course, the student will be able to-

- CO1 Understand the significance of microorganism in biogeochemical cycling of nutrients,
- Apply the knowledge of soil microbiology and significant biochemical processes of microbes to improve the agricultural practices.
- CO3 Define the science of microbiology, its development and importance for human welfare.
- CO4 Acquaint the knowledge in the different areas of microbiology
- CO5 Understand the bacteriological examinations of water
- CO6 Comprehend water borne, air borne and food borne diseases
- CO7 Acquire the knowledge about environmental and agricultural microbiology
- CO8 Learn the mechanism of action of antibiotics.

Unit No.	Title of Unit & Contents	Hrs.
I	Soil, Water and Air microbiology	07
	1. Soil, Water and Air microbiology.	
	2. Biogeochemical cycles: Mineralization in Carbon,	
	Nitrogen, And Sulfur, Phosphorous etc.	
	3. Bacteriological examinations of water; (Presumptive,	
	confirmative, complete test) MPN, SPC, IMVIC.	
	4. Significance of index organism.	
	5. Significance of microorganism in Air.	
	6. Methods of enumeration and controls.	
	Unit Outcomes:	1

Unit No.	Title of Unit & Contents	Hrs.			
	UO1 Understand the basic concepts in soil, water and air				
	microbiology.				
	UO2 Understand the biogeochemical cycles.				
II	Food Microbiology and Preservation	15			
	1. Scope of Food microbiology.				
	2. Role of microorganism in food processes.				
	3. Spoilage of food, potential responsible microbes.				
	4. Bacteriological examination of foods.				
	5. Preservation of food: Different methods of preservation: High				
	temperatures, chemical <mark>, irrad</mark> iation and physical techniques and				
	pasteurization.				
	6. Single cell protein: Pro <mark>cess, pr</mark> oduction and its significance.				
	Unit Outcomes:				
	UO1 Discuss the significance of single cell protein.				
	UO2 Gain the knowledge aboutdifferent methods of preservation of				
	food.	40			
III	Introduction to Medical Microbiology	13			
	1. Normal flora of the body.				
	2. Immune system and Immunity.				
	3. Microbial an <mark>d viral infections and diseases.</mark>				
	4. Use of anti <mark>biotics its mechanism of action</mark> , broad spectrum,				
	narrow sp <mark>ectrum and its respective mechanism.</mark>				
	5. Chemotherapy: Water borne, air borne, food borne diseases				
	and their causative agents from different reservoirs.				
	Unit Outcomes:				
	UO1 Comprehend water borne, air borne and food borne diseases				
	UO2 Explain the use of antibiotics its mechanism of action				
IV	Environmental and Agriculture Microbiology	10			
	1. Environ <mark>men</mark> tal micr <mark>obiolo</mark> gy: Scope and concern				
	2. Agricultural microb <mark>iolog</mark> y: Scope and concern				
	3. Industrial effluents and Waste water Assessment				
	4. Sewage treatment plants: Aerobic & anaerobic treatment				
	processes.				
	5. Integration of genetic engineering & application of genetically				
	engineered				
	6. Microbes in Agriculture				
	7. Environmental and waste water treatments.				
	Unit Outcomes:	1			
	UO1 Develop the ability to understand both aerobic & anaerobic				
	treatment				
	UO2 Understand about microbes in agriculture				
	552 Shadisana assat microsco in agriculture	1			

Learning Resources:

- 1. Soil Microbiology, Martin Alexander, 2nd ed., John Wiley and Sons Ltd., 1977.
- 2. Principles of Microbiology, Ronald M. Atlas and William C. Brown, 1995.
- 3. Food Microbiology, Martin R. Adams, Moris O Moss., Peter MacClure, 4th ed., Royal society of Chemistry, 1995.
- 4. Microbiology, Pelczar Tata McGraw-Hill, 1998.
- 5. Brock Biology of Microorganisms, Michael T. Madigan., John M Martinko., Kelly S. Bendar, 15th ed., David A. Stahl Pearson Publications, 2021.
- 6. General Microbiology, Roger Y. Stanier London-MacMillan publication, 1976.
- 7. Anantharaman and Panikkar's Textbook of Microbiology, 10th ed. Dr.Reba Kanungo, 2017.
- 8. General Microbiology, Vol. I and Vol. II by Pawar and Daginawala Himalaya Publishing House, 2019.
- 9. Brock Biology of Microorganisms, Michael T. Madigan, Kelly S. Bender, Daniel H. Buckley, W. Matthew Sattley Pearson; 16th Edition, 2019.
- 10. Applied Microbiology, R.C. Dubey, D.K. Maheshwari, 1st Edition, CBS Publishers & Distributors, 2017.

(Autonomous)

Department of Biotechnology

Course Type: Lab Course I

Course Title: Lab Course (Based on DSM I)

Course Code: 201BIO3302

Credits : 01 Max. Marks: 50 Hours: 30

Leaning Objectives

- LO1 To develop practical skills in isolating and enumerating microbes from various sources such as soil, water, and food samples.
- LO2 To acquire techniques for isolating and characterizing cellulose-degrading microorganisms.
- LO3 To master the process of isolating Rhizobium from root nodules and Azotobacter from rhizospheric soil.
- LO4 To learn methods for isolating phosphate-solubilizing bacteria.
- LO5 To gain proficiency in the bacteriological examination of water using MPN and IMVIC tests.
- LO6 To understand the procedures for isolating mycotoxins from infected food and vegetables.
- LO7 To experience fieldwork through a visit to a wastewater treatment plant to observe practical applications of microbiological techniques.

Course outcomes

After completion of course, the student will be able to-

- CO1 Isolate and enumerate microbes from soil, water, and food samples, demonstrating proficiency in microbial techniques.
- Gain expertise in isolating specific types of microbes, including cellulose degraders, rhizobium, azotobacter, and phosphate-solubilizing bacteria.
- CO3 Adept at performing mpn and imvic tests for the bacteriological examination of water, ensuring accurate detection and enumeration of indicator organisms.
- CO4 Develop the capability to isolate mycotoxins from contaminated food and vegetables, enhancing their understanding of food safety and toxicology.
- CO5 Gain practical insights into the application of microbiological techniques in environmental management.
- CO6 Acquire a holistic understanding of microbial diversity, roles, and applications in agriculture, environment, and food safety, contributing to sustainability efforts.

Practical No.	Unit
1	Isolation and enumeration of microbes from soil, water and food
	samples.
2	Isolation of cellulose degraders
3	Isolation of Rhizobium from root nodules
4	Isolation and characterization of Azotobacter from Rhizospheric soil.
5	Isolation of Phosphate solubilizing bacteria
6	Isolation of microbes from air and their enumeration

7	MPN (bacteriological examination of water)
8	IMVIC (bacteriological examination of water)
9	Isolation of mycotoxin from infected food and vegetables.
10	Visit to waste water plant (field visit)

N.B.: Any Ten Practicals from above.

Semester - IV

।। आरोह तमसो ज्योतिः।।

Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

(Autonomous)

Department of Biotechnology

Course Type: DSC-VII

Course Title: Molecular Biology

Course Code : 201BIO4101

Credits : 03 Max. Marks: 75 Lectures: 45 Hrs.

Learning Objectives:

LO1	To understand	basic of mo	lecular bid	ology and	its applications.

- LO2 To study DNA polymerases and other enzymes that catalyze DNA synthesis.
- LO3 To understand role of telomerase in DNA replication.
- LO4 To understand introduction to eukaryotic translation.
- LO5 To understand the role of cAMP and CAP.
- LO6 To study the concept of RNAi and gene Silencing.
- LO7 To acquire the knowledge about repair mechanism.
- LO8 To acquire the knowledge about mutation and their classification.

Course Outcomes:

After completion of course the student will be able to-

- CO1 Acquire knowledge of central Dogma of Life.
- CO2 Gain the knowledge about DNA replication and Telomere maintenance.
- CO3 Acquaint the knowledge of Post Transcriptional Modifications in Eukaryotes.
- CO4 Adapt the knowledge about Catabolic and Anabolic Operon.
- CO5 Gain the knowledge about eukaryotic gene expression.
- CO6 Acquire knowledge of diseases due to defects in nucleotide excision repair.
- CO7 Acquaint the knowledge of double-strand break repair by removal of DNA damage.

शित छत्रपट

CO8 Adapt the knowledge about translation process in eukaryotic and prokaryotic system.

Unit No.	Title of Unit & ontents	Hrs.	
I	Introduction to Molecular Biology and DNA Replication	10	
	 Definition and Scope of molecular Biology, Overview of DNA, RNA and central Dogma of Life. Historical Development of Molecular Biology: Milestones in the Discovery of DNA structure, DNA replication and Telomere maintenance: DNA polymerases and other enzymes that catalyze DNA synthesis, DNA replication- In prokaryotes and brief introduction to eukaryotes. Telomer maintenance: the role of telomerase in DNA replication, aging, and cancer. 		
	Unit Outcomes:		
	UO1 Discuss History and scop of molecular biology.		
	UO2 Explain difference between prokaryotic and eukaryotic replication.		
II	From gene to protein	12	

	1. Introduction, Prokaryotic Transcription,	
	2. Brief introduction to Eukaryotic Transcription	
	3. Post Transcriptional Modifications in Eukaryotes.	
	4. The genetic code, Secondary structure of RNA.	
	5. Prokaryotic Translation - Brief introduction to Eukaryotic	
	Translation	
	6. Post Translational Modifications in Eukaryotes.	
	Unit Outcome:	
	U01 Describe enzymes involved in prokaryotic and eukaryotic	
	transcription with their mode of action.	
III	UO2 Acquire knowledge of Translational Modifications in Eukaryotes. Gene Expression and Regulation	13
111	Operon and Prokaryotic Gene Expression, definition, Catabolic	13
	and Anabolic Operon,	
	•	
	2. Example of Operon (LAC, Trp operon)	
	3. Role of cAMP and CAP,	
	4. Brief introduction to eukaryotic gene expression (RNAi and gene	
	Silencing).	
	Unit Outcomes:	
	UO1 Acquaint the knowledge of Prokaryotic Gene Expression.	
	UO2 Understand operon concept.	
IV	Mutation, DNA repair, recombination	10
	1. Introducti <mark>on, Types of mutations and their phenotypi</mark> c	
	consequ <mark>ences,</mark>	
	2. Repair of single Base, excision repair - Mismatch repair,	
	Nucleotide excision repair	
	3. Disease - Hereditary nonpolyposis colorectal cancer	
	 Disease - Hereditary nonpolyposis colorectal cancer Double-strand break repair by removal of DNA damage - 	
	4. Dou <mark>ble-strand</mark> break <mark>repair by removal of DNA damage -</mark>	
	 4. Double-strand break repair by removal of DNA damage - Homologous recombination -Nonhomologous end-joining 5. Disease -Xeroderma pigmentosum and related disorders: 	
	 Double-strand break repair by removal of DNA damage - Homologous recombination -Nonhomologous end-joining Disease -Xeroderma pigmentosum and related disorders: defects in nucleotide excision repair 	
	 Double-strand break repair by removal of DNA damage - Homologous recombination -Nonhomologous end-joining Disease -Xeroderma pigmentosum and related disorders: defects in nucleotide excision repair Disease - Hereditary breast cancer syndromes: mutations in 	
	 Double-strand break repair by removal of DNA damage - Homologous recombination -Nonhomologous end-joining Disease -Xeroderma pigmentosum and related disorders: defects in nucleotide excision repair Disease - Hereditary breast cancer syndromes: mutations in BRCA1 and BRCA2, 	
	 Double-strand break repair by removal of DNA damage - Homologous recombination -Nonhomologous end-joining Disease -Xeroderma pigmentosum and related disorders: defects in nucleotide excision repair Disease - Hereditary breast cancer syndromes: mutations in BRCA1 and BRCA2, SOS repair 	
	 Double-strand break repair by removal of DNA damage - Homologous recombination -Nonhomologous end-joining Disease -Xeroderma pigmentosum and related disorders: defects in nucleotide excision repair Disease - Hereditary breast cancer syndromes: mutations in BRCA1 and BRCA2, SOS repair Unit Outcomes: 	
	 Double-strand break repair by removal of DNA damage - Homologous recombination -Nonhomologous end-joining Disease -Xeroderma pigmentosum and related disorders: defects in nucleotide excision repair Disease - Hereditary breast cancer syndromes: mutations in BRCA1 and BRCA2, SOS repair 	

Learning Resources:

- 1. Molecular Cell Biology, Lodish et al, Scientific American Book, 2004.
- 2. A Molecular Approach the Cell, Cooper & Hausmann –4th Edition, 2004.
- 3. Cell and Molecular Biology, Gerald Karp 4th Edition, 2007.

- Molecular biology of the gene, Watson, J. D., Baker, T. A., Bell, S. P., Gann, A., Levine, M.,
 & Losick, R. (7th ed.). Pearson, 2017.
- 5. Molecular biology, Weaver, R. F. McGraw-Hill Education, 5th edition, 2012.
- 6. Concepts of genetics, Klug, W. S., & Cummings, M. R., 6th edition, Pearson, 2020.
- 7. Genetics, Strickberger, M. W. Prentice Hall College Division, 2000.
- 8. Principles of Genetics, Gardner, Simmons, and Snustad, Wiley; 8th edition. 2006.
- 9. Molecular Biology Of The Gene, James D. Watson, Pearson Education, Seventh edition, 2017.
- 10. Principles of Molecular Biology 2nd Edn by Veer Bala Rastogi, MEDTEC, 2015.

(Autonomous)

Department of Biotechnology

Course Type: Lab Course VII

Course Title: Lab Course (Based on DSC-VII)

Course Code: 201BIO4103

Credits: 01 Max. Marks: 50 Hours: 30

Leaning Objectives:

- LO1 To develop proficiency in isolating DNA from bacterial cells, plant cells (using the CTAB method), and animal tissues.
- LO2 To gain hands-on experience in resolving DNA samples using agarose gel electrophoresis.
- LO3 To learn techniques for quantifying DNA using the Diphenylamine (DPA) method and determining nucleic acid purity and concentration through spectroscopy.
- LO4 To acquire skills in isolating total RNA from yeast cells and plant tissues and quantitatively estimating RNA using the orcinol reagent.
- LO5 To understand the process of creating a survival curve for bacterial cultures exposed to germicidal ultraviolet radiation as a mutagen.
- LO6 To master bacterial transformation and the replica plating procedure to isolate antibiotic-resistant mutants.

Course outcomes:

After completion of course the student will be able to-

- CO1 Adept at isolating DNA from various sources (bacterial, plant, and animal tissues) and RNA from yeast cells and plant tissues, showcasing their versatility in molecular biology techniques.
- CO2 Resolve DNA samples using agarose gel electrophoresis and quantify DNA accurately using the Diphenylamine (DPA) method.
- CO3 Demonstrate competence in using spectroscopy to determine nucleic acid purity and concentration.
- CO4 Develop the ability to quantitatively estimate and enhance their skills in nucleic acid analysis.
- Understand and apply the process of creating a survival curve for bacterial cultures exposed to ultraviolet radiation, demonstrating their knowledge of mutagenesis and bacterial response to UV exposure.
- CO6 Master bacterial transformation techniques and the replica plating procedure, enabling them to isolate and analyze antibiotic-resistant mutants, crucial for genetic and microbiological research.
- CO7 Gain a broad set of skills in molecular biology, including DNA/RNA isolation, quantification, and analysis, preparing them for advanced research and practical applications in biotechnology and microbiology.

Practical	Unit
No.	
1	Isolation of DNA from Bacterial cells.
2	Isolation of DNA from plant cells by CTAB method
3	Isolation of DNA from Animal Tissue.
4	To resolve the given DNA sample by using agarose gel electrophoresis
5	Quantification of DNA by using Diphenylamine (DPA) method.
6	Spectroscopic determination of nucleic acid purity and concentration.
7	Isolation of total RNA f <mark>rom y</mark> east cells and plant tissues.
8	To estimate RNA quan <mark>titative</mark> ly using orcinol reagent.
9	To prepare a survival curve for the given bacterial culture using
	germicidal ultraviolet Radiation as a mutagen.
10	Bacterial Transformati <mark>on</mark>
11	To perform replica plating procedure for isolating antibiotic resistant
	mutants.

N. B.: Any Ten Practicals from above.

(Autonomous) Department of Biotechnology

Course Type : DSC-VIII

Course Title: Biocatalysis and Enzyme Engineering

Course Code : 201BIO4102

Credits : 03 Max. Marks: 75 Lectures: 45 Hrs.

Learning Objectives:

- LO1 To gain a comprehensive understanding of the hierarchical structure of enzymes.
- LO2 To learn the principles of enzyme kinetics.
- LO3 To investigate various catalytic mechanisms of enzymes.
- LO4 To understand the mechanisms of enzyme regulations.
- LO5 To develop skills in enzyme extraction, purification, and characterization through laboratory techniques and methods.
- LO6 To explore techniques in enzyme engineering.
- LO7 To study the principles of biocatalysis and the role of enzymes in organic synthesis and industrial processes.
- LO8 To explore the use of enzymes in various applications, including industrial, pharmaceutical, and diagnostic contexts.

Course Outcomes:

After completion of course the student will be able to-

- CO1 Describe the structural features of enzymes and explain how these structures relate to their catalytic functions.
- CO2 Apply the principles of enzyme kinetics to calculate reaction rates and determine kinetic parameters using various models.
- CO3 Demonstrate a clear understanding of enzyme mechanisms and be able to explain how specific enzymes catalyze reactions.
- CO4 Explain the various mechanisms of enzyme regulation and predict the effects of regulatory factors on enzyme activity.
- Gain practical skills in the purification and characterization of enzymes, utilizing modern laboratory techniques.
- CO6 Design and conduct experiments in enzyme engineering, demonstrating an understanding of mutagenesis and protein engineering techniques.
- CO7 Apply the principles of biocatalysis to real-world industrial and synthetic processes, understanding the advantages of enzyme-catalyzed reactions.

CO8 Capable of identifying and explaining the diverse applications of enzymes in biotechnology, medicine, and industry, and proposing novel uses of enzymes in these fields.

Unit No.	Title of Unit & Contents		
I	Enzyme Structure and Function	8	
	1. Introduction to enzymes: Unique Features, Characteristics of		
	enzymes, Classification: IUB system, rationale, overview and		
	specific examples.		
	2. Structural hierarchy of enzymes: Primary, secondary, tertiary,		
	and quaternary stru <mark>ctures</mark>		
	3. Active site architecture and substrate specificity		
	4. Cofactors, coenzymes, and prosthetic groups		
	5. Overview of enzyme-substrate interaction models: Lock-and-		
	key, induced fit.		
-	6. Types of Specificity.		
	Unit Outcomes:		
	U01 Comprehend Enzyme Structures U02 Analyze Active Sites and Specificity		
II	Enzyme Kinetics and Mechanisms	12	
	1. Basic concepts of enzyme kinetics: Michaelis-Menten equation,		
	Graphical procedures in enzymology.		
	2. Factors affecting enzyme activity.		
	3. Inhibition of enzyme activity: Competitive, non-competitive,		
	uncompetitive, and mixed inhibition.		
	4. Bisubstrate Reactions.		
	5. All <mark>osteric reg</mark> ulatio <mark>n and cooperativity</mark>		
	6. Gen <mark>eral prin</mark> ciples of enzyme catalysis: Acid-base catalysis,		
	coval <mark>ent cat</mark> alysis, <mark>metal</mark> ion catalysis		
	7. Mecha <mark>ni</mark> stic exa <mark>mples</mark> : Serine proteases, lysozyme, and		
_	ribonuclease		
	Unit Outcomes:		
	U01 Apply the kinetic models to determine kinetic parameters and		
	analyze enzyme-catalyzed reactions. UO2 Explain the mechanisms of enzyme catalysis.		
III	Enzyme Regulation and Engineering	12	
	1. Enzyme regulation by covalent modification (e.g.,		
	phosphorylation)		
	2. Feedback inhibition and feedforward activation		
	3. Isozymes and zymogens		
	4. Methods of enzyme purification and characterization		
	5. Enzyme engineering: Site-directed mutagenesis, protein		
	engineering, directed evolution		

Unit No.		Title of Unit & Contents	Hrs.
	6.	Applications of enzyme engineering in biotechnology	
	Unit (Outcomes:	
	U01	Describe and analyze the various mechanisms of enzyme regulation.	
	UO2	Design Engineered Enzymes	
IV		cations of Enzymes in Biotechnology and Industry	13
	1.	Principles of biocatalysis and its applications	
	2.	Enzymes in organic synthesis and industrial processes	
	3.	Enzymes in the food industry, textile, and detergent industry	
	4.	Enzymes in medicin <mark>e: Dia</mark> gnostic tools, therapeutic enzymes,	
		enzyme inhibitors a <mark>s drugs</mark> .	
	5.	Enzyme Immobiliza <mark>tion: Tec</mark> hniques and Applications in	
		Biotechnology	
	6.	Advanced topics: Mu <mark>lti-enzyme c</mark> omplexes, metabolic	
		pathways, computati <mark>onal enzymolo</mark> gy.	
		Outcomes:	
	U01	Apply the principles of biocatalysis to develop and optimize	
		enzyme-cat <mark>alyz</mark> ed <mark>processes in indust</mark> rial and synthetic	
		application <mark>s.</mark>	
	U02	Identify and evaluate the use of enzymes in various fields.	

Learning Resources:

- 1. Principles of Biochemistry David L. Nelson, Michael M. Cox, W.H. Freeman, 2021.
- 2. Biochemistry Donald Voet, Judith G. Voet, Charlotte W. Pratt, Wiley, 2019.
- 3. Fundamentals of Enzymology: The Cell and Molecular Biology of Catalytic Proteins Nicholas C. Price, Lewis Stevens, Oxford University Press, 1999.
- 4. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems Irwin H. Segel, Wiley-Interscience, 1993.
- 5. Enzymatic Reaction Mechanisms Christopher T. Walsh, W.H. Freeman, 1979.
- 6. Enzyme Engineering and Evolution: General Concepts, Methods, and Applications Stefan Lutz, Uwe T. Bornscheuer, Wiley-Blackwell, 2009.
- 7. Biocatalysis in Organic Synthesis Kurt Faber, Springer, 2011.
- 8. Applied Biocatalysis: The Chemist's Handbook John Whittall, Peter W. Sutton, Wiley, 2009.
- 9. Principles and Techniques of Biochemistry and Molecular Biology Keith Wilson, John Walker, Cambridge University Press, 2020.

- Molecular Enzymology: Principles and Applications Patrick M. Murphy, CRC Press,
 2016.
- 11. Enzyme Technology Vijai Kumar, Springer, 2020.

(Autonomous)

Department of Biotechnology

Course Type : Lab Course VIII

Course Title: Lab Course (Based on DSC-VIII)

Course Code : 201BIO4104

Credits : 01 Max. Marks: 50 Hours: 30

Learning Objectives

- LO1 To explain the role of enzymes in biochemical.
- LO2 To study how substrate concentration, salt concentration, pH, temperature, and time affect enzyme activity.
- LO3 To learn to determine kinetic parameters such as Vmax and Km using Michaelis-Menten and Lineweaver-Burk plots.
- LO4 To analyze the Effect of Inhibitors, Activators, and Cofactors.
- LO5 To understand the process of immobilizing enzymes and its applications.
- LO6 To gain hands-on experience in isolating and characterizing enzymes from biological sources.
- LO7 To learn the technique of zymography to detect enzyme activity in biological samples.
- LO8 To explore Enzyme Engineering and Site-Directed Mutagenesis.

Course Outcomes

After completion of the course, the student will be able to-.

- CO1 Demonstrate an understanding of enzyme function and factors affecting enzyme activity.
- CO2 Successfully measure and interpret enzyme kinetic parameters such as Vmax and Km.
- CO3 Assess the impact of substrate concentration, pH, temperature, salt, and time on enzyme activity.
- CO4 Perform enzyme immobilization in sodium alginate and evaluate its effectiveness.
- CO5 Isolate, purify, and characterize enzymes from biological samples using various biochemical techniques.
- CO6 Detect and analyze enzyme activity using zymography.
- CO7 Use double reciprocal plots to analyze enzyme kinetics and solve related problems.
- CO8 Understand and apply basic concepts of site-directed mutagenesis to modify enzyme activity or stability.

Practical No.	Unit
1	To Study Effect of amylase activity on Starch
2	To measure the activity of a specific enzyme, such as amylase, lipase, or
	catalase

3	Effect of substrate concentration on enzyme activity							
4	Effect of Salt concentration on enzyme activity							
5	Effect of pH concentration on enzyme activity							
6	Effect of Temperature on enzyme activity							
7	Effect of Time on enzyme activity							
8	Effect of Inhibitors/Activators/Cofactors on enzyme activity,							
9	To determine the kinetic parameters Vmax and Km of an enzyme							
10	Immobilization of enzy <mark>me i</mark> n sodium alginate matrix							
11	Purification and Ch <mark>aracte</mark> rization of an Enzyme from a Biological							
	Source							
12	Zymography for Enz <mark>yme Detect</mark> ion							
13	To analyze enzyme ki <mark>netics using a do</mark> uble reciprocal plot							
14	Purification of enzyme							
15	Analysis of Phosphorylation Effects on Enzyme Activity							
16	Enzyme E <mark>ngine</mark> eri <mark>ng Techniques: Intro</mark> duction to Site-Directed							
	Mutagenes <mark>is</mark>							
17	Problems based on Enzyme Kinetic							

।। आरोह तमसो ज्योतिः।।

Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

Department of Biotechnology

Course Type : DSM II

Course Title: Clinical Microbiology

Course Code : 201BIO4301

Credits: 03 Max. Marks: 50 Lectures: 45 Hrs.

Learning Objectives

- LO1 To understand the design and methodology of clinical trials.
- LO2 To explain the regulatory framework and ethical considerations in clinical research.
- LO3 To identify key statistical methods and data analysis techniques used in clinical research.
- LO4 To explore the role of biomarkers and personalized medicine in clinical trials.
- LO5 To review strategies for recruitment, retention, and adherence of study participants.
- LO6 To evaluate the process of clinical trial reporting, publication, and dissemination of findings.
- LO7 To assess the impact of clinical trial results on clinical practice and patient outcomes.
- LO8 To analyze the challenges and limitations of conducting clinical trials in diverse populations and settings.

Course Outcomes

After completion of the course, the student will be able to-

- CO1 Understand concepts of medical microbiology.
- CO2 List and describe medically important microorganisms.
- CO3 Gain knowledge of morphology, cultural characteristics, biochemical tests, epidemiology, laboratory diagnosis etc. of bacterial pathogens.
- CO4 Gain knowledge of morphology, cultural characteristics, biochemical tests, epidemiology.
- CO5 Laboratory diagnosis etc. of bacteria, viral and fungal pathogens.
- CO6 Understand the basics and applications of various chemotherapeutic agents.
- CO7 Understand the modes of action of various chemotherapeutic agents.
- CO8 Chromatography to recover and purify fermentation products efficiently.

Unit No.	Title of Unit & Contents	Hrs.
I	Medically Important Microorganisms and Their Diseases	12
	 Medically Important Microorganisms. Microbial diseases with respect to general characters, pathogenesis, diagnosis. Chemotherapy and prophylaxis: Monkeypox virus Nipah virus Human papilloma virus (HPV) Corona virus Handling and Disposal of Infectious Material. Unit Outcomes: Understand and Identify Medically Important Microorganisms 	
	and Their Associated Diseases. UO2 Apply Knowledge of Chemotherapy and Prophylaxis for Infectious Diseases.	
II	Introduction to Hematology and Anticoagulants	10
	 Introduction to hematolog. Naturally occurring anticoagulants. Commonly used anticoagulants EDTA, citrates, oxalates, heparin anticoagulants and their mode of action. Blood and its composition: Plasma and cellular composition of blood. Formation of blood - erythropoiesis, leucopoiesis, thrombopoiesis, morphology of normal blood cells. 	
	Unit Outcomes:	
	U01 Understand the Principles of Hematology and Anticoagulants. U02 Apply Knowledge of Anticoagulants to Laboratory Practices.	
III	Mycotic Infections in Humans	10
	 Mycotic infections in humans: Superficial, subcutaneous, cutaneous and systemic mycoses. Source of infection, symptomatology & diagnosis of Aspergillosis Candidiasis Microsporum Trichophyton Epidermatophyton Protozoal infections in humans: Pathogenesis, life cycles, diagnosis & prophylaxis of Entamoeba Toxoplasma Roundworm Tapeworm Plasmodium Unit Outcomes:	
	UO1 Understand and Identify Mycotic Infections.	

Unit No.		Title of Unit & Contents	Hrs.					
	U02	Apply Diagnostic and Treatment Approaches to Mycotic Infections.						
IV	Clinic	Clinical and Laboratory Diagnosis of Microbial Diseases						
	1.	1						
	2.	2. Types, sources, factors affecting and control measures of						
		nosocomial and iatrogenic infections.						
	3.	Collection, transport and preliminary processing of clinical						
		pathogens.						
	4.	Clinical, microbiological, immunological and molecular						
	diagnosis of microbia <mark>l dise</mark> ases.							
	Unit Outcomes:							
	U01	UO1 Understand and Ma <mark>nage H</mark> ospital Infections.						
	U02	Apply Methods for Disease Diagnosis and Infection Control.						

Learning Resources:

- 1. Medical Microbiology: A Guide for the Laboratory, A. K. Gupta, CBS Publishers & Distributors, 2019.
- 2. Essentials of Medical Microbiology, D. S. Gupte, Jaypee Brothers Medical Publishers, 2022.
- 3. Fundamentals of Clinical Microbiology, R. K. Jain, Jaypee Brothers Medical Publishers, 2020.
- 4. Clinical Microbiology: Principles and Applications, S. R. Yadav, Elsevier Health Sciences, 2021.
- 5. Manual of Clinical Microbiology, Anuradha N. Rao, Wolters Kluwer, 2018.
- 6. Clinical Microbiology: Current and Future Perspectives, R. P. Gupta, Academic Press, 2022.
- 7. Textbook of Medical Microbiology, S. S. Bhatia, Jaypee Brothers Medical Publishers, 2020.
- 8. Clinical and Diagnostic Microbiology, N. K. Sharma, CBS Publishers & Distributors, 2021.
- 9. Principles of Clinical Microbiology, M. S. Yadav, Elsevier Health Sciences, 2020
- 10. Clinical Microbiology: Diagnostic Techniques and Applications, S. K. Sharma, Springer, 2023.

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Biotechnology

Course Type: Lab Course II

Course Title: Lab Course (Based on DSM II)

Course Code : 201BIO4302

Credits: 01 Max. Marks: 50 Hours: 30 Hrs.

Learning Objectives:

- LO1 To isolate and identify different pathogenic bacteria and fungi from clinical samples using appropriate culture techniques and identification methods.
- LO2 To isolate and identify multi-drug resistant (MDR) bacterial pathogens from clinical samples according to CLSI guidelines, and perform antimicrobial susceptibility testing.
- LO3 To separate blood components using centrifugation techniques, and analyse each component for its clinical relevance and diagnostic value.
- LO4 To understand and apply standard operating procedures (SOPs) for the collection, transport, and preservation of various clinical samples, ensuring their quality and integrity.
- LO5 To safely dispose of contaminated materials following biohazard protocols, maintaining laboratory safety and preventing contamination.
- LO6 To isolate and identify specific human bacterial pathogens using targeted culture and identification techniques.
- LO7 To measure and document the dimensions of parasitic specimens using micrometry, aiding in their identification and morphological study.
- LO8 To apply polymerase chain reaction (PCR) techniques to amplify bacterial DNA from clinical samples, followed by gel electrophoresis to confirm bacterial species.

Course Outcomes:

After completion of the course, the student will be able to-

- CO1 Isolate and identify pathogenic bacteria and fungi from clinical samples, enhancing diagnostic accuracy and treatment planning.
- CO2 Isolate and identify multi-drug resistant (MDR) bacterial pathogens according to CLSI guidelines, contributing to effective antimicrobial stewardship and treatment strategies.
- CO3 Perform centrifugation to separate and analyze blood components, aiding in diagnostic and therapeutic applications.
- CO4 Apply standard operating procedures (SOPs) for the collection, transport, and preservation of clinical samples, ensuring sample integrity and accurate diagnostic results.
- CO5 Implement safe and effective disposal procedures for contaminated materials, maintaining laboratory safety and compliance with biohazard protocols.
- CO6 Isolate and identify specific human bacterial enhancing targeted diagnostics and treatment.
- CO7 Measure and document the dimensions of parasitic specimens using micrometry, aiding in their accurate identification and classification.

CO8 Utilize polymerase chain reaction (PCR) for the molecular identification of bacteria, improving diagnostic precision and understanding of bacterial genetics.

Practical No.	Unit							
1.	Isolate and identify different pathogenic bacteria and fungi							
2.	Isolation and identification of MDR bacterial pathogen isolated from							
	clinical samples as per CLSI guidelines.							
3.	Detection of microbes using Fluorescent labelled antibodies.							
4.	Study of SOPs for collection, transport and preservation techniques of							
	human clinical samples <mark>(sto</mark> ol, urine, blood, sputum, biopsy, soil, and							
	parasites.							
5.	Disposal of contamina <mark>ted ma</mark> terials							
6.	Isolation and Identific <mark>ation of</mark> the following human bacterial pathogens							
	(any two): Listeria sp <mark>ecies, Burk</mark> holderia species, Chlamydia species							
7.	Measurements of dimensions of any two parasitic specimens using							
	micrometry							
8.	Molecular Identificatio <mark>n of Bacteria Usi</mark> ng Polymerase Chain Reaction							
	(PCR)							
9.	Isolation of Ly <mark>mp</mark> hocyt <mark>es.</mark>							
10.	Evaluation o <mark>f Sterilization and Disinfec</mark> tion Techniques in the							
	Laboratory							
11.	Separation and Analysis of Blood Components Using Centrifugation							
12.	Visit to a Pathology Laboratory that processes clinical specimens to							
	understand specimen handling and diagnostic procedures							

N.B.: Any Ten Practicals from above.

१। आरोह तमसो ज्योतिः।। Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

UG Second Year

Extra Credit Activities

Sr.	Course Title	Credits	Hours
No.			T/P
1	MOOCs	Min. of 02 credits	Min. of 30 Hrs.
2	Certificate Courses	Min. of 02 credits	Min. of 30 Hrs.
3	IIT Spoken English	Min. of 02 credits	Min. of 30 Hrs.
	Courses		

Guidelines:

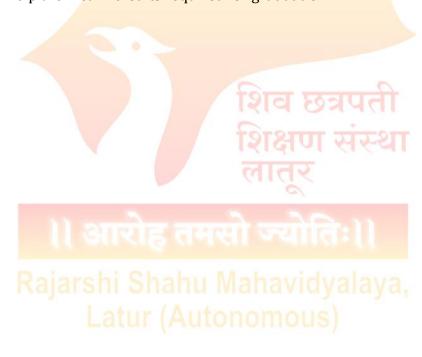
Extra -academic activities

- 1. All extra credits claimed under this heading will require sufficient academic input/contribution from the students concerned.
- 2. Maximum 04 extra credits in each academic year will be allotted.
- 3. These extra academic activity credits will not be considered for calculation of SGPA/CGPA but will be indicated on the grade card.

Additional Credits for Online Courses:

- 1. Courses only from SWAYAM and NPTEL platform are eligible for claiming credits.
- 2. Students should get the consent from the concerned subject Teacher/Mentor/Vice Principal and Principal prior to starting of the course.
- 3. Students who complete such online courses for additional credits will be examined/verified by the concerned mentor/internal faculty member before awarding credits.
- 4. Credit allotted to the course by SWAYAM and NPTEL platform will be considered as it is.

Additional Credits for Other Academic Activities:


- 1. One credit for presentation and publication of paper in International/National/State level seminars/workshops.
- 2. One credit for measurable research work undertaken and field trips amounting to 30 hours of recorded work.
- 3. One credit for creating models in sponsored exhibitions/other exhibits, which are approved by the concerned department.
- 4. One credit for any voluntary social service/Nation building exercise which is in collaboration with the outreach center, equivalent to 30 hours
- 5. All these credits must be approved by the College Committee.

Additional Credits for Certificate Courses:

- 1. Students can get additional credits (number of credits will depend on the course duration) from certificate courses offered by the college.
- 2. The student must successfully complete the course. These credits must be approved by the Course Coordinators.
- 3. Students who undertake summer projects/ internships/ training in institutions of repute through a national selection process, will get 2 credits for each such activity. This must be done under the supervision of the concerned faculty/mentor.

Note:

- 1. The respective documents should be submitted within 10 days after completion of Semester End Examination.
- 2. No credits can be granted for organizing or for serving as office bearers/volunteers for Inter-Class / Associations / Sports / Social Service activities.
- 3. The office bearers and volunteers may be given a letter of appreciation by the respective staff coordinators. Besides, no credits can be claimed for any services/activities conducted or attended within the college.
- 4. All claims for the credits by the students should be made and approved by the mentor in the same academic year of completing the activity.
- 5. Any grievances of denial/rejection of credits should be addressed to Additional Credits Coordinator in the same academic year.
- 6. Students having a shortage of additional credits at the end of the third year can meet the Additional Credits Coordinator, who will provide the right advice on the activities that can help them earn credits required for graduation.

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Examination Framework

Theory:

40% Continuous Assessment Tests (CATs) and 60% Semester End Examination (SEE)

Practical:

50% Continuous Assessment Tests (CATs) and 50% Semester End Examination (SEE)

Course	Marks	CAT & Mid Term Theory			CAT Practical		Best Scored CAT & Mid Term	SEE	Total	
1	2	Att.	CAT I	3 Mid Term	CAT II	Att.	4 CAT	5	6	5+6
DSC/DSE/ GE/OE/Minor	100	10	10	20	10	- \	-	40	60	100
DSC	75	05	10	15	10	-	-	30	45	75
Lab Course/AIPC/ OJT/FP	50	-	>	-	-	05	20	7	25	50
VSC/SEC/ AEC/VEC/CC	50	05	05	10	05	-	-	20	30	50

Note:

- 1. All Internal Exams are compulsory
- 2. Out of 02 CATs best score will be considered
- 3. Mid Term Exam will be conducted by the Exam Section
- 4. Mid Term Exam is of Objective nature (MCQ)
- 5. Semester End Exam is of descriptive in nature (Long & Short Answer)
- 6. CAT Practical (20 Marks): Lab Journal (Record Book) 10 Marks, Overall Performance 10 Marks.

Summary of cross cutting issues:

Biotechnology encompasses a wide range of technologies that manipulate biological matter and processes to create useful products. These technologies range from traditional practices like brewing and bread-making to advanced genetic modifications in plants, animals, and humans. The curriculum is designed to address several cross-cutting issues critical to student development in areas such as Professional Ethics, Gender, Environment and Sustainability, and Human Values. These aspects are integrated into various courses to ensure that students develop both technical expertise and ethical responsibility.

Cross-cutting issues relevant to Professional Ethics, Gender, Environment and Sustainability, and Human Values into the curriculum:

Sr. No.	Course Name	Code	Rel <mark>evant to</mark> Pro <mark>fessional Ethics</mark>	Description
1	Immunology and Virology	DSC V	Professional Ethics	Students will acquire practical skills in immunological techniques.
2	Metabolism	DSC VI	Professional Ethics	Students will develop expertise in metabolic pathways and processes.
3	Molecular Biology	DSC VII	Professional Ethics	Students will gain proficiency in molecular biology techniques, preparing them for labbased roles.
4	Biocatalysis and Enzyme Engineering	DSC VIII	Professional Ethics	Students will specialize in enzyme technology and its applications.
5	Applied Microbiology	Minor I	Professional Ethics, Environment and Sustainability	Students will understand microbial roles in environmental cycles and sustainability practices.
6	Clinical Microbiology	Minor II	Professional Ethics	Students will develop skills for diagnosing and managing microbial diseases.
7	Good Laboratory Practices	SEC III	Professional Ethics	Students will learn industry-standard lab practices, ensuring safety and compliance.
8	Dairy Technology	SEC IV	Professional Ethics, Entrepreneurship	Students will gain knowledge in dairy product processing and related business opportunities.

9	Field Projects	AIPC/OJT	Profession	nal Et	thics,	Students will engage in real-
			Gender,	Environn	ment	world projects, integrating
			and Sustainability			ethical, environmental, and
						societal aspects.

This revised curriculum provides students with the necessary skills and knowledge to address both technical and ethical challenges in biotechnology across various sectors.

Curricula developed and implemented have relevance to the local, national, regional and global developmental needs

Sr. No.	Course code	Course Name	Linkage with Local/National/Regional/Global development
1	DSC V	Immunology and Virology	Development of basic immunological techniques relevant to healthcare and research.
2	DSC VI	Metabolism	Qualitative and quantitative analysis of metabolites for applications in health and industry.
3	DSC VII	Molecular Biology	Molecular techniques essential for biotechnology, medicine, and research.
4	DSC VIII	Biocatalysis and Enzyme Engineering	Molecular techniques for enzyme applications in industry and biocatalysis.
5	Minor I	Applied Microbiology	Solutions for environmental issues through microbial processes and sustainability.
6	Minor II	Clinical Microbiology	Application of microbiological methods for disease diagnosis and treatment.
7	SEC III	Good Laboratory Practices	Implementation of GLP standards in industries and research institutions.
8	SEC IV	Dairy Technology	Development of technologies for dairy processing and food industry innovations.
9	AIPC/OJT	Field Projects	Hands-on projects addressing local, national, and global challenges in biotechnology and environmental sustainability.

Courses having focus on employability/entrepreneurship/skill development

Sr.	Name of	Course	Activities/Con		Year of	
No	the	Code	Employabilit	introducti		
	Course			on		
			Employability	Entrepreneur	Skill	
			ship developme			
					nt	

1	Immunolog y and Virology	DSC V	Provides job opportunities in pathology labs and research institutes.	Supports startups focused on immunological research and diagnostics.	Develops expertise in immunologi cal techniques and diagnostics.	2018-2019
2	Metabolis m	DSC VI	Opens career paths in metabolomics and clinical research.	Encourages entrepreneuri al ventures in metabolic analysis and diagnostics.	Trains students in the analysis of metabolic pathways and disorders.	2018-2019
3	Molecular Biology	DSC VII	Offers roles in laboratory research and molecular diagnostics.	Facilitates entrepreneurs hip in molecular biology research and diagnostics.	Provides advanced skills in molecular techniques and genetic analysis.	2018-2019
4	Biocatalysi s and Enzyme Engineerin g	DSC VIII	Prepares students for roles in enzyme technology and biocatalysis industries.	Encourages starting ventures in enzyme-based technologies and applications.	Develops skills in enzyme engineering, biocatalysis, and industrial applications.	2024-25
5	Applied Microbiolo gy	Minor I	Provides employment in bioprocessing, fermentation industries, and environmental microbiology.	Promotes entrepreneurs hip in microbial technology and bioremediatio n.	Equips students with practical skills in microbial techniques and applications.	2018-2019

ideal (Matorioliload)

6	Clinical Microbiolo gy	Minor II	Creates job opportunities in clinical diagnostics and microbiology labs.	Supports startup ideas related to clinical microbiology and diagnostics.	Develops expertise in clinical microbiolog y techniques and pathogen analysis.	2024-25
7	Good Laboratory Practices	SEC III	Enhances employability by providing knowledge of industry- standard practices.	Encourages the establishment of labs with good practices and quality control.	Trains students in maintaining high standards in laboratory operations.	2018-2019
8	Dairy Technolog y	SEC IV	Opens career paths in dairy industry and dairy biotechnology.	Supports entrepreneurs hip in dairy processing and technology innovations.	Provides skills in dairy production, quality control, and technology applications.	2024-25
9	Field Projects	AIPC/OJ T	Provides practical experience and enhances employability in research and industry projects.	Encourages project-based entrepreneuri al ventures and innovations.	Develops research, project management , and problem- solving skills.	2024-25

This restructured content focuses on enhancing employability through practical expertise, fostering entrepreneurship with industry-relevant knowledge, and developing essential skills to meet the demands of contemporary biotechnology fields.

Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)