Shiv Chhatrapati Shikshan Sanstha's

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Structure and Curriculum of Two-Year Degree Programme

Postgraduate Programme of Science and Technology M.Sc. in Mathematics

> Board of Studies in Mathematics Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

w.e.f. June, 2024 (In Accordance with NEP-2020)

शिक्षण संस्था

i

Rajarshi Shahu Wahavidyalaya Academic Year : 2024-25

Review Statement

The NEP Cell reviewed the Curriculum of **M.Sc. Mathematics** Programme to be effective from the **Academic Year 2024-25.** It was found that, the structure is as per the NEP-2020 guidelines of Govt. of Maharashtra.

Date: 13/03/2024

Place: Latur

NEP Cell Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

शेव छत्रपती

गण संस्था

।। आरोह तमसो ज्योतिः।।

Rajarshi Shahu Mahavidyalaya Latur (Autonomous)

CERTIFICATE

I hereby certify that the documents attached are the Bonafide copies of the Curriculum of **M.Sc. Mathematics** Programme to be effective from the **Academic Year 2024-25**.

Date: 13/03/2024 Place: Latur

min

Dr. M S Wavare Chairperson Board of Studies in Mathematics Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

ाव छत्रपती

ण संस्था

।। आरोह तमसो ज्योतिः।।

Rajarshi Shahu Mahavidyalaya Latur (Autonomous)

(Autonomous)

Members of Board of Studies in the Subject Mathematics

Under the Faculty of Science and Technology

Department of Mathematics

Sr. No.	Name	Designation	In position
1	Dr. Mahesh S Wavare	Chairperson	HoD
	Professor and Head, Department of		
	Mathematics, Rajarshi Shahu 🛛 🖊 🦯		
	Mahavidyalaya, Latur (Autonomous)		
2	Dr. Bhalchandra D. Karande	Member	V.C. Nominee
	Head and Associate Professor, Depar <mark>tment o</mark> f		
	Mathematics, Maharashtra Udaygiri		
	Mahavidyalaya, Udaygiri Dist. Latur.		
3	Dr. S. D. Kendre,	Member	Academic Council Nominee
	Associate Professor, Department of		
	Mailelliaucs, Savitribai Phule Pune University Pune		
4	Dr. M. T. Gonhane	Member	Academic Council Nominee
•	Associate Professor.Department of	Member	rieddenne Gounen Nonnnee
	Mathematics		
	Shivaji University, Kolhapur.		
5	Dr. N. S. Darkunde	Member	Expert from outside for
	School of Mathematical S <mark>ciences, S. R. T. M. U</mark>		Special Course
	Nanded.		
6	Mr. S. S. Ranmal	Member	Expert from Industry
_	Sungrace Computers Pvt Ltd, Pune.		
7	Prof. S. M. Sninde	Member	Alumni
	College of Engineering Amravati Dist		
	Amaravati.		6
8	Dr. N. S. Pimple	Member	Faculty Member
9	Miss. S. D. Shinde	Member	Faculty Member
10	Mr. P. D. Bombalge	Member	Faculty Member
11	Mr. N. D. Kapale	Member	Faculty Member
12	Dr. A. A. Yadav	Member	Member from the same faculty

। आरोह तमसो ज्योतिः []

Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

From the Desk of the Chairperson...

When Shiv Chhatrapati Shikshan Sanstha started the Science Faculty in Rajarshi Shahu Mahavidyalaya, Latur in 1971, the Department of Mathematics was founded. In the beginning, there was just one instructor for the PUC class and the first year of the B.Sc. B.Sc.-II and B.Sc. III year courses began in 1973 and 1974, respectively, in response to the natural expansion. During the 2017–2018 academic year, the department launched its M.Sc. Mathematics programme with a 30-student entry limit.

The undergraduate degree course in mathematics is a six- or eight-semester course spanned across three- or four-academic years, in accordance with the guidelines of the Undergraduate Curriculum Framework 2022 (UGCF 2022). The teaching and learning process is centered on the learner and includes both theoretical and practical elements. While guaranteeing that the student has a solid foundation in the topic and obtains in-depth knowledge, it provides flexibility in program structure. A student may choose courses from the syllabus that includes Discipline Specific Electives (DSEs), Generic Electives (GEs), Skill Enhancement Courses (SECs), Ability Enhancement Courses (AECs), and Value Addition Courses (VACs) in addition to the Discipline Specific Core (DSC) courses. As a result, the interdisciplinary approach and commitment to creative approaches within the curricular framework are highlighted.

The new National Education Policy (NEP), 2020, which includes significant elements, offers a platform to develop, nurture, grow, encourage, and multiply mathematical thinking. To achieve a balance between the requirement for employment in the twenty-first century and entrepreneurship, which is characterized by lateral, critical, and numerical thinking, the essential changes have been put in place. The NEP acknowledged the importance of mathematical thinking and how necessary it is for the country to become a Vishwa guru. The NEP provides children with the nutrition they require by making mathematics enjoyable and engaging from the very beginning. Because it encourages the development of computer skills and intuitive reasoning, the NEP also requires the adoption of a coding curriculum, which should start in middle school.

The courses for the UG Programme are framed using time tested and internationally popular text books so that the courses are at par with the courses offered by any other reputed universities around the world.

Only those concepts that can be introduced at the UG level are selected and instead of cramming the course with too many ideas the stress is given in doing the selected concepts rigorously. The idea is to make learning mathematics meaningful and an enjoyable activity rather than acquiring manipulative skills and reducing the whole thing an exercise in using thumb rules.

As learning Mathematics is doing Mathematics, to this end, some activities are prescribed to increase student's participation in learning. Duration of the degree Programme shall be six- or-eight semesters distributed in a period of three/four academic years.

(Dr. Mahesh S Wavare)

mu

Chairperson Board of Studies in Mathematics

।। आरोह तमसो ज्योतिः।।

Rajarshi Shahu Mahavidyalaya Latur (Autonomous)

Shiv Chhatrapati Shikshan Sanstha's

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Political Science

Index

Sr. No.	Content	Page No.
1	Structure of Two-Year Degree Programme	1
2	Abbreviations	2
3	Courses and Credits	3
4	Programme Outcomes (POs)	4
5	Curriculum : Semester-III	6
6	MMC-VII : Ring Theory	7
7	MMC-VIII : Functional Analysis	9
8	MMC-IX: Classical Mechanics	11
9	MEC-III(A) Coding Theory	13
	OR	15
	MEC-III(B) Numerical Linear Algebra	15
10	RMC : Research Meth <mark>odol</mark> ogy	-
11	Curriculum : Semester – IV	17
12	MMC-X : Field Theory	18
13	MMC-XI : Linear Integral Equations	20
14	MMC-XII : Numerical Analysis	22
15	MEC-IV(A) Numerical Linear Algebra	24
	OR	26
	MEC-IV(B) Fuzzy Mathematics	20
16	Field Project	-
17	Extra Credit Activities	28
18	Examination Framework	30

11 आरोह तमसो ज्योतिः]]

Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

Shiv Chhatrapati Shikshan Sanstha's Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous) Department of Mathematics PG Skeleton in Accordance with NEP-2020 Illustrative Credit Distribution Structure for Two Years M.Sc. Degree

Year Level	Sem	24-28(22- fo	Major 26) per Sem 46-56 r two years	RM	OJT/F P	RP	Cum. Cr	Marks	Degree
		Mandator	Elective					Theory	
I 6.0	I	yMajor I4Cr4Major II4Cr4Major III44Cr	MEC I 4 Cr	RM C 4 Cr	NA	NA	20 Cr	: 01 Cr. = 25 M. Lab Course (Scienc e): 01 Cr. = 50 M.	PG Diploma (After 03 Year UG Degree)
	II	Major IV 4 Cr Major V 4 Cr Major VI 4 Cr	MEC II 4 Cr	NA	OJT I 4 Cr/ FP I 4 Cr	NA	20 Cr	OJT/FP : 01 Cr.	
	Total	Major 24 Cr	MEC 08 Cr	RM C 04 Cr	OJT/F P 04 Cr	NA	40 Cr	= 25 M.	
		Ex	it Option: PG Diploma	with 40	Credits A	fter 03 Year	<mark>B.Sc. Deg</mark> re	e	
II	III	Major VII 4 Cr Major VIII	MEC III 4 Cr	NA	NA	RPI 4 Cr	20 Cr		PG Degree (After
6.5		Major IX 4 Cr			शिष्ट	ण सं	स्था	RP I & RP II:	U3 Year UG Degree)
	IV	Major X 4 Cr Major XI 4 Cr	MEC IV 4 Cr	NA	NA	RPII 6 Cr	22 Cr	01 Cr. = 25 M	Degreej
		Majo <mark>r XII</mark> 4 Cr	। आरोह त	नर	ो ज्य	गेतिः।	1		
	Total	Major 24 Cr	MEC 08 Cr	NA	NA	RP 10 Cr	42 Cr		
Cum. Total of I & II Year		Major 48 Cr	Latur (A	RM C 04 Cr	OJT/F P 04 Cr	RP 10 Cr	40+42 =82 Cr		82 Credits
		Exit Option:	Two Years 04 Sem. PO	G Degre	ee with 82	Credits Aft	er 03 Year	r UG Degro	ee

Abbreviations:

- 1. MEC : Major Elective Course
- 2. RMC : Research Methodology Course
- 3. OJT : On Job Training (Internship/Apprenticeship)
- 4. FP : Field Project
- 5. RP : Research Project
- 6. Cum. Cr : Cumulative Credit

शिव छत्रपती शिक्षण संस्था लातूर

।। आरोह तमसो ज्योतिः।।

Rajarshi Shahu Mahavidyalaya Latur (Autonomous)

Shiv Chhatrapati Shikshan Sanstha's Rajarshi Shahu Mahavidyalaya, Latur (Autonomous) Department of Mathematics

M.Sc. Mathematics Skeleton in Accordance with NEP-2020 Illustrative Credit Distribution Structure for Two Years/One Year PG (M.Sc.)

Year &	Se	M	ajor	RM	OJT/F	RP	Cu	Marks	Degre
Level	m	24-28(22-26	5) per Sem 46-		Р		m.		е
		56 for t	wo years				Cr		
		Mandatory	Elective						
		Ring	Coding	NA	NA	Res	20		PG
	III	Theory 4 Cr	Theory 4 Cr			ear	Cr		Degre
II		Functional	or			Proi			е
		Analysis	Numerical			ect I			(After
6.5		4 Cr	Linear			4			03
		Classical	Algebra 4 Cr			Cr			Year
		Mechanics	Or						UG
		4 Cr	MPTEL/SWAT						Degre
			AM MOOL S						e)
			Courses 4 Cr						-
								11.	
		Field	Fuzzy					25 M	
	IV	Theory	Mathematics	NA	NA	Res	22	23 141	
		4 Cr	4 Cr		1111	ear	Cr		
		Linear	or			ch	01		
		Integral	Fractional			Proj			
		Faultions 4	Calc <mark>ulus 4 Cr</mark>			II			
		Cr	or			6Cr			
		Numerical	NPTEL/SWA						
		Analysis	AM MOOC's						
		Allarysis	Equivalent						
		401	Courses 4 Cr						
	Tot	Major 24	MEC 08 Cr	NA	NA	RP	42		
	al	Cr			-	10	Cr		
						Cr		0	
Cum.		Major 48	MEC 16 Cr	RMC 04	OJT/F	RP	40		82
Total		Cr		Cr	P 04 Cr	10	+4		Credit
of I &				1	918 1	Cr	2=	211	S
II Year					21.21		82		
					2 6	2			
	E	xit Option: Tw	o Years 04 Sem.	PG Degree	with 82 Cr	edits A	After 0	3 Year UG D	egree

। आरोह तमसो ज्योतिः । ।

Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

(Autonomous)

Faculty of Science & Technology

Programme Outcomes (POs) for M.Sc. Programme					
PO No.	Upon completion of this Programme the students will be able to				
PO 1	To Develop their mathematical knowledge, oral, written, and practical skills in a way to enhance confidence and provide satisfaction.				
PO 2	To inculcate the confidence by developing a feel for numbers, patterns, and relationships.				
PO 3	To advance an ability to consider, solve problems, present and interpret results.				
PO 4	To improve Communica <mark>tion and re</mark> ason using mathematical concepts.				
PO 5	To understand mathema <mark>tical principle</mark> s and their applications.				
PO 6	To foster the abilities to reason logically, to classify, to generalize and to prove.				
PO 7	To acquire the foundation, appropriate to their further studies of mathematics and of other disciplines.				
PO 8	To do research <mark>proje</mark> ct in the field of Mathematics.				

(Autonomous)

Progra	amme Specific Outcomes (PSOs) for M.Sc. in Mathematics		
PSO No.	Upon completion of this programme, the students will be able to		
PSO 1	Upgrade the knowledge to qualify CSIR-NET/SET/GATE in Mathematical Sciences.		
PSO 2	Get tune with further studies of their area of interest.		
PSO 3	Be good teacher in Mathem <mark>atics</mark> subject.		
PSO 4	Get placed in job of Scient <mark>ific C</mark> omputing /Data Analyst etc .		
PSO 5	Comprehend and write effective reports and design documentation related to mathematical research and literature, make effective presentations		
PSO 6	Implant in students' inv <mark>entive quali</mark> ties, teamwork, and ethical practices in order to achieve society standards.		
PSO 7	Provide a high-quality ed <mark>ucation by inco</mark> rporating projects, participatory		
	learning, and cutting-edg <mark>e software tools in</mark> to successful teaching and learning processes.		
PSO 8	Provide a comprehensive curriculum which will educate students towards becoming great scientific professionals.		
PSO 9	Inculcate the interest for mathematics in students and to prepare them for potential research.		
PSO 10	Promote collaborative learning and application of mathematics to real life situation.		

Semester - III

।। आरोह तमसो ज्योतिः।।

Rajarshi Shahu Mahavidyalaya Latur (Autonomous)

(Autonomous)

Department of Mathematics

Course Type : Major-VII Course Title : Ring Theory Course Code : 601MAT3101 Credits: 04 M

Max. Marks: 100

Lectures: 60 Hrs.

Learning Objectives

- LO1 Basic properties of rings, examples of rings,
- LO2 ideals, algebra of ideals
- LO3 Homomorphism and isomorphism of rings
- LO4 Integral domain, UFD, PID's and ED

Course outcomes

- CO1 Different useful types of rings
- CO2 Concept of ideals and quotient ring
- CO3 Similarities between two rings by means of homomorphism and isomorphisms
- CO4 Integral domain, UFD, PID's and ED

Unit No.	Title of Unit & Contents	Hrs.
Ι	Rings	15
	1. Terminology, Rings of Continuous Functions, Matrix Rings,	
	Polynomi <mark>al Rings, Power Series Rings, Laurent R</mark> ings,	
	Boolean Rings, Some Special Rings	
	2. Direct Products	
	3. Several Variables ring	
	4. Opposite Rings	
	5. Characte <mark>ristic of</mark> a Ring.	
	Unit Outcome:	
	UO 1. Classify the various rings with terminology	
	UO 2. Identify Characteri <mark>stic o</mark> f Rings	
II	Ideals	15
	1. Definitions	
	2.Maximal Ideals, Generators	
	3.Basic Properties of Ideals	
	4.Algebra of Ideals	
	5.Quotient Rings	
	6.Ideals in Quotient Rings	
	7.Local Rings	
	Unit Outcome:	
	UO 1. Get concept of Ideals and algebra of ideals	
	UO 2. Evaluate quotient ring and ideals in quotient ring	
III	Homomorphism of Rings	15
	1. Definitions and Basic Properties	
	2. Fundamental Theorems Endomorphism Rings	

Unit No.	Title of Unit & Contents	Hrs.
	3. Field of fractions	
	4. Prime fields	
	Unit Outcomes:	
	UO 1. Get concept of homomorphism of rings	
	UO 2. Find field of fraction and prime fields	
IV	Factorization in Domains	15
	1. Division in Domains	
	2. Euclidean Domains	
	3. Principal Ideal Domains	
	4. Factorization Domains	
	5. Unique Factorization D <mark>omai</mark> ns	
	6. Eisenstein's Criterion	
	Unit Outcome:	
	UO 1. Classify domains and <mark>it's prope</mark> rties	
	UO 2. Apply Eisenstein's Cri <mark>terion</mark>	

- 1. C. Musili, Introduction to RINGS AND MODULES Second Revised Edition, Narosa Publishing House
- 2. P. B. Bhattacharya, S. K. Jain and S. R. Nagpaul, "Basic Abstract Algebra", (Second Ed.) Cambridge Univ. Press (Indian Ed.1995)
- 3. Joseph A. Gallian, "Contemp<mark>orary Abstract Algebra", (Fourt</mark>h Ed.), Narosa, 1999.
- 4. V.K. Khanna, S.K. Bhambri, "A Course in Abstract Algebra", Vikas Publishing House.
- 5. David Dummit and Richard Foote, "Abstract Algebra", John Wiley and Sons.

(Autonomous)

Department of Mathematics

Course Type : Major-VIII **Course Title :** Functional Analysis

Course Code : 601MAT3102

Credits: 04

Max. Marks: 100

Lectures: 60 Hrs.

Learning Objectives

- LO1 To introduce students, the Hahn-Banach Theorem
- LO2 To learn Properties of Hilbert spaces
- LO3 To familiarize with different operators-such as adjoint, conjugate, normal. Positive, Unitary etc.,
- LO4 To develop working knowledge on Projections, eigen value and eigen vectors, eigen space and Spectrum of T.

Course outcomes

- CO1 Identify Normed Linear Space, Banach Space, continuous Linear transformations, Conjugate space, Banach Algebra, Graph of linear transformation, Hahn-Banach Theorem and its applications, Open Mapping and Closed Graph Theorems.
- CO2 Analyze Hilbert space, Orthogonal and Orthonormal vectors and sets, Orthogonal Compliments and conjugate space H*., Schwart Lemma, Bessel's Inequality and Riesz representation theorem.
- CO3 To Identify, Self adjoint, Normal, Unitary and Positive operators and to analyze the invariant subspace and reducible transformations.
- CO4 To Provide information on Eigen Value, Eigen Vectors, Eigen Spaces and Spectrum of T.

Unit No.	Title of Unit & Contents	Hrs.
Ι	Banach spaces	15
	1. Normed linear spaces, Banach spaces, Quotient norm spaces	
	2. Continuous linear transformations, equivalent norms	
	3. The Hahn-Banach theorem and its consequences.	
	4. The Natural imbedding of N in N**	
	Unit Outcome:	
	UO 1. To understand basics of Banach Space	
	UO 2. To understand the Hahn-Banach Theorem	
II	Open Mapping theorem and Orthonormal Sets	15
	1. The open mapping Theorem, the closed graph theorem,	
	2. The conjugate of an operator, the uniform boundedness	
	principle,	
	3. orthogonal complements, The projection theorem, orthogonal	
	sets	

Unit No.	Title of Unit & Contents	Hrs.
	4. The Bessel's inequality, Fourier expansion and Perseval's	
	equation, Separable Hilbert spaces	
	Unit Outcome:	
	UO 1. To apply Open mapping theorem and Closed graph	
	theorem	
	UO 2. To study Bessel's inequality , Fourier expansion and	
	Perseval's equation	
III	Hilbert spaces	15
	1. Definition and examples and simple properties	
	2. The conjugate space, Ries <mark>z's the</mark> orem	
	3. The adjoint of on operato <mark>rs, self a</mark> djoint operators	
	4. Normal and unitary o <mark>perators,</mark> projections, Contraction	
	mapping and Banach fixe <mark>d point theor</mark> em.	
	Unit Outcomes:	
	UO 1. To understand differen <mark>t operators in Ban</mark> ach Spaces.	
	UO 2. To familiariz <mark>e</mark> with the Contraction mapping and BFPT	
IV	Finite Dimensional Spectral Theory	15
	1. Matrices	
	2. Determinants a <mark>nd spectrum of an operator</mark>	
	3. The spectral Theorem	
	Unit Outcome:	
	UO 1. To understand the Spectral theory and Spectrum theorem.	

- 1. G.F. Simmons, "Introduction to Topology and Modern Analysis", McGraw-Hill Book Company, International student Edition, New York.
- 2. B.V. Limaye, "Functional Analysis", Wiley Eastern Ltd.
- 3. G. Bachman and L. Narici, "Functional Analysis".
- 4. Erwie Krey zig, "Introductory Functional Analysis with Applications", John Wiley & Sons, New York, 1978Academic Press 1966.
- 5. J. B. Conwa<mark>y, "A course in functional analysis", Springer-Verlag, New</mark> York 1990.
- 6. S. Ponnusa<mark>my, "Foun</mark>dations of Functional Analysis", Narosa Publishing House

Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

(Autonomous)

Department of Mathematics

Course Type : Major-IX **Course Title :** Classical Mechanics

Course Code : 601MAT3103

Credits: 04

Max. Marks: 100

Lectures: 60 Hrs.

Learning Objectives:

- LO1 To study D' Alembert's Principle, Lagrange's equations of motion
- LO2 To study Euler- Lagrange's equations
- LO3 To study Hamiltonian and least action principle
- LO4 To study Kinematics of rigid body motion.

Course Outcomes:

- CO1 Understood the mechanics of the system of particles
- CO2 Able to apply Euler Lagrange's equation to extremis the functional.
- CO3 Well understood The Kinematics of rigid body motion

Unit No.	Title of Unit & Contents	Hrs.
Ι	Survey of the Elementary Principles	15
	 Mechanical of system of particles, Mechanics of system of particles Conservation theorems conservative forces with examples Constraints, Generalized co-ordinates. D. Alembert's principle Lagrange's equations of motion. The forms of Lagrange's equations of motion for non conservative systems and partially conservative and partially non conservative systems Kinetic energy as a homogeneous function of generalized velocities. Simple applications of the Lagranian formulation. Unit Outcomes: UO 1. Acquaint with the basic concepts of system of particle such as constraint, Generalized co-ordinates. D. Alembert's principle UO 2. Able to apply the Lagrange Formula 	
II	Calculus Of Variation	15
	 Cyclic co-ordinates and generalized momentum conservation Theorems Calculus of variation, Euler Lagrange's equation, First integrals of Euler Lagrange's equation, the case of several dependent variables Geodesics in a plane, the minimum surface of revolution, Brachistochrome problem Isoperimetric problems, problems of maximum enclosed area. 	

Unit No.	Title of Unit & Contents	Hrs.			
	Unit Outcome:				
	UO 1. To evaluate extremal of the function				
III	Hamiltonian Equations of Motion	15			
	1. Hamiltonian function, Hamilton's canonical equations of				
	motion				
	2. Derivation of Hamilton's equations from variational				
	principle, Physical significance of Hamiltonian				
	3. The principle of least action, Jacobi's form of the least action				
	principle				
	 Cyclic co-ordinates and Routh's procedure 				
	Unit Outcome:				
	UO 1. To understood the Hamilton equation and principle of				
	least action				
IV	The Rigid Body Equation of Motion	15			
	 The independent co-ordinates of a rigid body 				
	2. Orthogonal transformations, Properties of transformation				
	matrix				
	3. Infinitesimal rotations, The Eulerian angles, The Calyley-				
	Klein parameters				
	4. Eulers theorem <mark>on</mark> motio <mark>n of rigid body, Angu</mark> lar momentum				
	and kinetic ene <mark>rgy</mark> of m <mark>otion of a rigid body a</mark> bout a point				
	Unit Outcome:				
	UO 1. One can Apply Euler's Theorem.				

1. Goldstein, H., "Classical Mechanics". (1980), Narosa Publishing House, New Delhi.

- 2. Weinstock, "Calculus of Variations with Applications to Physics and Engineering" (International Series in Pure and Applied Mathematics). (1952), Mc Graw Hill Book Company, New York.
- 3. Whittaker, E. T., "A treatise on the Analytical Dynamics of particles and rigid bodies". (1965), Cambridge University Press.
- 4. Rana, N.C. and Joag, P. S.," Classical Mechanics". (1991) Tata McGraw Hill, New Delhi.
- 5. Bhatia, V. B. Classical Mechanics with Introduction to Non-linear Oscillation and Chaos.(1997), Narosa publishing House.
- 6. Gupta, A. S. Calculus of Variations with Applications (1997), Prentice Hall of India.
- 7. Gelfand, I. M. and Fomin, S. V. Calculus of Variations (1963), Prentice Hall of India.
- 8. Mondal, C. R.," Classical Mechanics" (2001), Prentice Hall of India.

Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

Rajarshi Shahu Mahavidyalaya, Latur (Autonomous) Department of Mathematics

Course Type : MEC-III(A) Course Title : Coding Theory Course Code : 601MAT3201 Credits: 04

Max. Marks: 100

Lectures: 60 Hrs.

Learning Objectives:

- LO1 To introduce Error detection, correction and decoding of codes
- LO2 To study Finite Fields, to Introduce linear codes, and to acquire knowledge of encoding and decoding using linear codes.
- LO3 To Discuss various bounds in coding theory
- LO4 To construct linear codes.

Course Outcomes:

- CO1 Detect, correct, and decode given code.
- CO2 Construct finite fields and compute minimal polynomial.
- CO3 Study Linear codes and some bounds in coding theory.
- CO4 Construct Linear Codes.

Unit No.	Title of Unit & Contents	Hrs.
Ι	Introduction to Error detection, correction and decoding	20
	and Finite fields	
	1. Communication channels, Maximum likelihood decoding	
	2. Hamm <mark>ing distan</mark> ce, N <mark>earest ne</mark> ighbor/minimum distance	
	decoding 1910 Solution	
	3. Distance <mark>of a co</mark> de	
	4. Fields, Pol <mark>yn</mark> omial ri <mark>ngs, S</mark> tructure of finite fields, Minimal	
	polynomials.	
	Unit Outcomes:	
	UO 1. Knowing about communication Channels, Hamming	
	distance and parameters of code.	
	UO 2. Introduction to finite field and minimal polynomial.	
II	Linear Codes	15
	1. Vector spaces over finite fields, Linear codes	
	2. Hamming weight, Bases for linear codes, Generator matrix	
	and parity-check matrix	
	3. Equivalence of linear codes, Encoding with a linear code	
	4. Decoding of linear codes (Cosets, Nearest neighbour	
	decoding for linear codes, Syndrome decoding)	

Unit No.	Title of Unit & Contents	Hrs.
	Unit Outcomes:	
	UO 1: To study bases for linear codes	
	UO 2: To encode and decode using Linear codes.	
III	Bounds in coding theory	15
	 The main coding theory problem, Lower bounds, Sphere- covering bound Gilbert-Varshamov bound, Hamming bound and perfect codes, Binary Hamming codes q-ary Hamming codes, Golay codes, Some remarks on perfect codes Singleton bound and MDS codes, Plotkin bound. Unit Outcomes: UO1: To study bounds in coding theory UO2: To study perfect codes 	
IV	Constructions of linear codes	10
	1. Propagation rules	
	2.Reed–Muller cod <mark>es</mark>	
	3. Subfield codes.	
	Unit Outcomes:	
	UO1: To study Co <mark>nstruction rules for linear codes.</mark>	
	UO2: To discuss <mark>Reed-Muller Codes and Subfield s</mark> ubcodes.	

- 1. San Ling and Chaoping Xing, Coding Thoery A First Course. Cambridge University Press
- 2. E.R. Berlekemp, Algebraic Coding Thoery , McGraw-Hill New York(1968) Publishing House.
- 3. F J MacWilliams and N J A Sloane, The Theory of Error –Correcting Codes, North Holland
- 4. Lid and Pilz , Applied Abstract Algebra 2nd Edition.
- 5. R. Lidl, H. Neiderreiter , Introduction to finite fields and their applications, Cambridge University Press.

Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

Department of Mathematics

Course Type : MEC-III(B) Course Title : Fractional Calculus Course Code : 601MAT3202 Credits: 04

Max. Marks: 100

Lectures: 60 Hrs.

Learning Objectives

- LO1 Mittag-Leffler Functions of one and two parameters
- LO2 Fractional derivatives
- LO3 Fractional integrals
- LO4 To solve fractional differential equations

Course outcomes

- CO1 Discuss about beta and Gamma functions
- CO2 Calculate fractional derivatives and fractional integral
- CO3 Do geometric and physical interpretation of fractional integral and fractional differentiation.
- CO4 Solve fractional differential equation

Unit No.	Title of Unit & Contents	Hrs.
Ι	Gamma and Beta Functions	15
	1. Definition of the Gamma and Beta Functions, Some	
	properties of Gamma and Beta Functions	
	2. Relation between Gamma and Beta Functions	
	3. Special Function: Definition of Mittag-Leffler Functions of	
	one and t <mark>wo pa</mark> ramete <mark>rs, Rel</mark> ations of Mittag-Leffler Function	
	to some other functions	
	4. The Laplace transfo <mark>rm of Mittag-Leffler Function in two</mark>	
	parameters	
	5. Wright Function, Definition of Wright function	
	Unit Outcomes:	
	U01: Get concepts of Beta and Gamma functions	
	UO2: Able to do problems on special function as Mittag-Leffler	
	and Wright Function.	
II	Fractional Derivative and Integrals	15
	1. Integral relation and relation to other functions, Grunwald-	
	Letnikov fractional derivatives	
	2. Riemann-Liouville fractional derivatives, Caputo's fractional	
	derivative	

Unit No.	Title of Unit & Contents	Hrs.
	3. Fractional derivatives of standard functions and their	
	graphical representation by Mathematical softwares	
	Fractional integrals	
	Unit Outcomes:	
	U01: Calculate fractional derivatives and integrals.	
	U02: Understand graphical representation of fractional	
	derivatives of standard function by software.	
III	Integral transform of fractional derivatives	15
	1.Geometric and physical interpretation of fractional integral	
	and fractional differentiations	
	2. Left and right fractional derivatives.	
	3. Laplace transform of fractional derivatives	
	4.Fourier transform of fractional derivatives and Mellin	
	transform of fractional de <mark>rivatives</mark>	
	Unit Outcomes:	
	U01: Knowledge of Geometric and physical interpretation of	
	fractional integral and fractional differentiations.	
	U02: Compute Inte <mark>gral</mark> transform of fractional derivatives.	
IV	Fractional differential equations	15
	1. Linear fractional differential equations (homogeneous	
	fractional differential equations and non-homogeneous	
	fractional differential equations)	
	2. Existence and uniqueness theorem as a method of solution,	
	3. Laplace transform method to solve fractional differential	
	equations	
	Unit Outcomes:	
	UO1 :Solving homogeneous fractional differential equations	
	and non-homogeneous fractional differential equations	
	UO2: Solving fractional differential equations using Laplace	
	Transform.	

- 1. Igor Podlubny Fractional Differential Equations, Academic press, San Diego, California.
- 2. Miller K. S. and Ross B. An Introduction to Fractional Calculus and Fractional Differential Equations, New York, John Wiley, 1993.
- 3. Oldham K. B. and Spanier J. The Fractional Calculus, New York, Academic press, 1974.
- 4. Igor Podlubny Fractional Differetial Equations, Academic Press, Boston, New York.
- 5. Anatoly A. Kilbas, Hari M. Shrivastav, Juan J. Trujillo- Theory and Applications of Fractional Differential Equations, Elesevier, New York 2006.
- 6. Shananu Das Functional Fractional Calculus, 2011 Springer-Verlag, Berlin Heidelberg.

Semester - IV

शिव छत्रपती शिक्षण संस्था लातूर

।। आरोह तमसो ज्योतिः।।

Rajarshi Shahu Mahavidyalaya Latur (Autonomous)

17

(Autonomous) Department of Mathematics

Course Type : Major-X Course Title : Field Theory Course Code : 601MAT4101 Credits: 04

Max. Marks: 100

Lectures: 60 Hrs.

Learning Objectives

- LO1 To Know Algorithm for factorization
- LO2 To obtain Fields Extension
- LO3 To Know Normal and Separable extension
- LO4 To Find Galois Group

Course outcomes

- CO1 Apply Schoneman-Eisenstein criterion
- CO2 Find degree of extension using tower theorem
- CO3 Apply theory of splitting fields
- CO4 Find Galois group.

Unit No.	Title of Unit & Contents	Hrs.
Ι	Introduction	15
	1. Definition and examples of fields	
	2. Minimal polynomial, adjoining elements	
	3. Irreducible polynomial, Algorithm for factorization	
	4. The Schoneman- Eisenstein criterion	
	Unit Outcome:	
	UO1. Determine Irreducibility of polynomials	
	UO2. Able to apply Scho <mark>nema</mark> n-Eisenstein criterion	
II	Fields Extension	15
	1. Prime radicals	
	2. The degree of extension	
	3. Finite Extensions	
	4. The Tower theorem	
	5. Algebraic extension	
	Unit Outcome: a ur (Autonomous)	
	UO1. Finding Degree of Extension	
	UO2. Know characterisation of finite extension	
III	Normal and Separable extension	15
	1. Splitting fields Definition and examples	

Unit No.	Title of Unit & Contents	Hrs.
	2. Uniqueness of splitting fields	
	3. Normal extensions, Separable extension	
	4. Fields of characteristic zero, Fields of characteristic p	
	5. Theorem of primitive element.	
	Unit Outcomes:	
	UO1. Finding Splitting field of polynomials	
	UO2. Apply theory of Separable and Normal Extension	
IV	The Galois Group	15
	1. Definition of the Galois Group	
	2. Galois group of splitting <mark>fields</mark> , Permutations of the roots	
	3. Automorphism of group <mark>s and F</mark> ixed field,	
	4. Fundamental theorem o <mark>f Galois T</mark> heory, Fundamental	
	Theorem of Algebra	
	5. examples of Galois group <mark>s, polynomial s</mark> olvable by radicals	
	Unit Outcome:	
	UO1. Evaluate Galois group o <mark>f splitting field</mark>	
	UO2. Apply theore <mark>m o</mark> f algeb <mark>ra</mark>	

- 1. P. B. Bhattacharya, S. K. Jain and S. R. Nagpaul, "Basic Abstract Algebra", (Second Ed.), Cambridge Univ. Press (Indian Ed.1995).
- 2. V.K. Khanna, S.K. Bhambri, "A Course in Abstract Algebra", Vikas Publicing House. (Second Edition)
- 3. David Dummit and Richard Foote, "Abstract Algebra", John Wiley and Sons.
- 4. David A Cox, "Galois Theory". Second edition, A John Wiley and Sons, INC, publication

(Autonomous)

Department of Mathematics

Max. Marks: 100

Lectures: 60 Hrs.

Learning Objectives

- LO1 To study Convolution
- LO2 To classify Volterra integral equations of first and second kind
- LO3 To learn Laplace Transform applications to solve Volterra integral equations
- LO4 To learn Abels singular integral equation

Course outcomes

- CO1 Understand the Relationship between Linear Differential equations and Volterra Integral Equations, and solutions by using resolvent kernels.
- CO2 Evaluate Characteristic numbers and Eigen functions and its properties.
- CO3 Apply method of successive approximation
- CO4 Discuss Eulers Integrals, Abel's problem, Iterated Kernels.
- CO5 Apply Laplace Transformation to get the solution of Integro-Differential Equations, Volterra Integral Equation of the First kind

Unit No.	Title of Unit & Contents	Hrs.
Ι	Integral equations	15
	1. Definition and classification of integral equations, Special	
	kinds of kernels	
	2. Convolution integrals, Conversion of an initial value problem	
	into a Volterra integral equation	
	3. Conversion of a boundary value problem into a Fredholm	
	integral equation, Eigen values and eigen functions	
	4. S <mark>olution of homogeneous Fredholm integral equations of t</mark> he	
	s <mark>econd kind with separable kernel, Fredholm alternative.</mark>	
	Unit Outcome:	
	UO 1. To classify integral equations	
	UO 2. To convert IVP and BVP into FIE and VIE	
II	Methods of Successive approximation	15
	1. Method of successive approximation, Iterated kernel,	
	Resolvent kernel	
	2. Solution of Fredholm and Volterra integral equations of the	
	second kind by the method of successive substitutions	

Unit No.	Title of Unit & Contents	Hrs.
	 Solution of Fredholm and Volterra integral equations of the second kind by the method of successive approximations: Neumann series. Unit Outcome: U0 1. To apply method of successive approximation to solve integral equations. 	
III	Integral Equations with Symmetric Kernels	15
	 Integral equations with symmetric kernels, Regularity conditions, Complex Hilbert space An orthonormal system of functions, Fundamental properties of eigen values and eigen functions for symmetric kernels. Expansion in eigen functions and bilinear form, Hilbert-Schmidt theorem and some immediate consequences. Singular integral equations, The Abel integral equation examples Unit Outcomes: UO 1. To evaluate kernels of integral equations UO 2. To obtain solutions of Abel's singular integral equations 	
IV	Integral transform method	15
	 Integral transform method Application of Laplace transform to solve Volterra integral equations with convolution type kernels Application of Fourier transform to solve integral equations, Examples. Unit Outcome: U0 1. To solve Volterra and Fredholm integral equations by using Laplace Transform 	

- 1. T R.P. Kanwal, "Linear Integral Equations Theory and Technique", Academic Press, Inc., New York.
- 2. Dr. M. D. Raisi<mark>nghania, "Integral Equations and Boundary Value Proble</mark>ms", S. Chand and Company Pvt. Ltd., New Delhi.
- 3. S.G. Mikhlin, "Linear integral equations" (Translated from Russian), Hindustan Book Agency 1960.
- 4. B.L. Moiseiwitsch, "Integral Equations", Longman, London & New York.
- 5. M. Krasnov, A Kiselev, G. Makaregko, "Problems and Exercises in integral equations" (Translated from Russian by George Yankovsky) MIR Publishers Moscow, 1971.

(Autonomous)

Department of Mathematics

Course Type : Major-XII Course Title : Numerical Analysis Course Code : 601MAT4103 Credits: 04

Max. Marks: 100

Lectures: 60 Hrs.

Learning Objectives

- LO1 To solve algebraic, transcendental, and differential equations, and to calculate derivatives and integrals
- LO2 To understand of the elements of error analysis for numerical methods and certain proofs.
- LO3 To develop problem solving skills

Course outcomes

- CO1 Solve an algebraic or transcendental equation using an appropriate numerical method
- CO2 Approximate a function using an appropriate numerical method
- CO3 Solve a differential equation using an appropriate numerical method
- CO4 Evaluate a derivative and integration at a value using an appropriate numerical method

Unit No.	Title of Unit & Contents	Hrs.
Ι	Solution to Numerical, Algebraic and Transcendental	15
	Equation	
	1. Iterative <mark>solution</mark> s of no <mark>nline</mark> ar equation: bisection method	
	Regula falsi method, Fixed-point iteration, Newton's method,	
	secant method	
	3. Acceleration of conve <mark>rgen</mark> ce	
	4. Newton's method for two nonlinear equations, polynomial	
	equation methods	
	Unit Outcome:	
	UO 1. Able to find approximate solution of algebraic and	
	transcendental equation.	
	UO 2. To know the rate of convergence of Newton's method,	
	secant method	
II	Interpolation	15
	1. Polynomial interpolation: interpolation polynomial, ,	
	2. Divided difference interpolation, Aitken's formula	
	3. Finite difference formulas,	

Unit No.	Title of Unit & Contents	Hrs.
	4. Hermite's interpolation, double interpolation	
	Unit Outcome:	
	UO 1. To Interpolate the polynomial from given tabulated	
	entries	
III	Simultaneous Linear Algebraic Equation	15
	1. Linear systems of Equations: Gauss Elimination	
	2. Gauss-Jordan method, LU decomposition	
	3. Iterative methods: Jacobi Method of Iteration	
	4. Gauss- Seidel iteration.	
	Unit Outcomes:	
	UO 1. To solve linear syst <mark>em of e</mark> quation using direct method	
	and iterative method	
IV	Numerical calculus	15
	1. Numerical Calculus: Numerical differentiation, Errors in	
	numerical differentiation.	
	2. Numerical Integration, Trapezoidal rule, Simpson's 1/3 -	
	rule, Simpson <mark>'s</mark> 3/8 rul <mark>e.</mark>	
	3. Error estimat <mark>es fo</mark> r Tra <mark>pezoidal rule and Sim</mark> pson's ule.	
	Unit Outcome:	
	UO 1. To Evaluat <mark>e the numerical differentiation and integra</mark> tion	

1. S. S. Sastry, Introduction Methods of Numerical Analysis (4th Edition) (Prentice-Hall).

संस्था

- 2. K.E. Atkinson,: An Introduction to Numerical Analysis
- 3. J. I. Buchaman and P. R. Turner, Numerical Methods and Analysis.
- 4. DR. V. N. Vedamurthy, DR. N. Ch. S. N. Iyengar, Numerical Methods

(Autonomous) Department of Mathematics

Course Type : MEC-IV(A)

Course Title : Numerical Linear Algebra

Course Code : 601MAT4201

Credits: 04

Max. Marks: 100

Lectures: 60 Hrs.

Learning Objectives:

- LO1 To review of linear algebra concepts.
- LO2 To apply Gram Schmidt orthogonalization process.
- LO3 To Compute floating point representation of numbers.
- LO4 To Compute condition number of a matrix

Course Outcomes:

- CO1 Analyze the basic operations on vector spaces numerically.
- CO2 Introduce MATLAB and compute sign integer representation of numbers.
- CO3 Discuss the stability of systems
- CO4 To compute condition numbers of matrix

Unit	Title of Unit & Contents	Hrs.
No.		
Ι	Review of Linear Algebra	15
	1. Matrix operations and type of matrices, Determinant of a	
	Matrix	
	2. Rank of a matrix, Vector Spaces, Linear dependence and	
	independence	
	3. Bases and Dimensions, Linear Transformation Orthogonal	
	subspaces	
	4. Row space, column space and null Space, Eigenvalues and	
	Eigenvectors, Diagonalizable Matrices.	
	Unit Outcome:	
	UO 1: To review linear algebra	
II	Orthogonal sets and sign representation of numbers	15
	1. Orthogonal Sets, Gram Schmidt orthogonalization and	
	orthonormal bases (Autonomous)	
	2. Introduction to MATLAB	
	3. Sign integer representation, Computer representation of	
	numbers.	
	Unit Outcome:	
	UO 1: To compute integer sign representation of numbers	

Unit	Title of Unit & Contents	Hrs.
No.		
III	Floating point representation	15
	1. Floating point representation, Round-off error	
	2. Error propagation in computer arithmetic	
	3. Addition and multiplication of floating point numbers	
	Unit Outcomes:	
	UO 1. To compute error in computer arithmetic	
	UO 2. To do addition and multiplication of floating-points	
IV	Conditioning and condition numbers	15
	1. Conditioning and conditio <mark>n num</mark> bers, Stability of numerical	
	algorithms	
	2. Vector norms, Matrix Nor <mark>ms, Conv</mark> ergent Matrices	
	3. Stability of non-linear sys <mark>tem Conditi</mark> on number of a matrix	
	and Elementary propertie <mark>s.</mark>	
	Unit Outcomes:	
	UO1: To study stability of Nu <mark>merical Algorithms</mark>	
	UO2: To study Conv <mark>er</mark> gent m <mark>atrices and stability</mark> of non-linear	
	systems.	

- 1. V. Sundarapandian, Numerical Linear Algebra, PHI, 2008.
- 2. Biswa Nath Dutta, Numerical Linear Algebra and Applications, SIAM, 2010.
- 3. Roger A. Horn and Charles R. Johnson, Matrix Analysis, Cambridge University Press,1994

शव छत्रपती

क्षण संस्था

4. William Ford, Numerical Linear Algebra with Applications, Academic Press, 2014.

(Autonomous)

Department of Mathematics

Course Type : MEC-IV(B) Course Title : Fuzzy Mathematics Course Code : Credits: 04

Max. Marks: 100

Lectures: 60 Hrs.

Learning Objectives

- LO1 To learn crips and fuzzy set theory and make calculation on fuzzy set theory
- LO2 To recognize fuzzy logic membership function
- LO3 To make applications on Fuzzy logic membership function and fuzzy inference systems
- LO4 To understand applications of semantic interpreters, control systems and reasoning systems

Course outcomes

- CO1 Understand basic knowledge of the fuzzy sets, operations and their properties
- CO2 Understand the fundamental concepts of Fuzzy functions and Fuzzy logic.
- CO3 Apply the concepts of Fuzzy sets in image processing, pattern reorganization and decision making.
- CO4 Identify the applications of fuzzy sets

Unit No.	Title of Unit & Contents	Hrs.
Ι	Fuzzy Sets	12
	1. Basic concepts of fuzzy s <mark>et – t-norm</mark> – t-conorms	
	2. Membership function – α -cut	
	3. Algebra of <mark>fuzzy</mark> sets – D <mark>istan</mark> ce between fuzzy sets	
	4. Fuzzy relation	
	Unit Outcome: MIC	
	UO 1. To study algebra of Fuzzy sets and fuzzy relations	
II	Fuzzy Arithmetic	12
	1. Fuzzy numbers – Arithmetic operations of fuzzy numbers	
	2. Extension principle	
	3. Interval arithmetic shahay has a value of a second second second second second second second second second s	
	4. Defuzzification.	
	Unit Outcome:-dlui (Autonomous)	
	UO 1. To understand the Interval arithmetic and defuzzification	
	UO 2. To study Fuzzy numbers and fuzzy arithmetic operations.	
III	Fuzzy Function and Fuzzy Logic	24
	1. Fuzzy valued functions	

Unit No.	Title of Unit & Contents	Hrs.					
	2. Fuzzy equations, fuzzy inequalities, system of fuzzy linear						
	equations						
	3. Maximum and minimum of fuzzy functions.						
	4. Classical Logic – Multi-valued Logics						
	5. Fuzzy Propositions – Fuzzy Quantifiers – Linguistic hedges						
	6. Inference from conditional Fuzzy proposition						
	Unit Outcomes:						
	UO 1. To familiarize with the Fuzzy equations, fuzzy						
	inequalities, system of fuzzy linear equations						
	UO 2. To understand fuzzy propositions and quantifiers.						
IV	Applications of Fuzzy Set Theory	12					
	1. Fuzzy sets in Decision making						
	2. Optimization in Fuzzy environment						
	3. Fuzzy set application in image processing						
	4. Fuzzy set application in pa <mark>ttern recognition</mark>						
	Unit Outcome:						
	UO 1. Apply fuzzy t <mark>he</mark> ory in o <mark>ptimization problem</mark> s, image						
	processing an <mark>d pa</mark> ttern recognition						

- 1. George J. Klir and Bu Yuan, "Fuzzy sets and Fuzzy logic Theory and applications", Prentice Hall of India, New Delhi.
- 2. Didier Bubois and Henri Prade, "Fuzzy sets and systems", Academic Press.
- 3. James J Buckley, Esfandiar Eslami, "An Introduction to Fuzzy logic and Fuzzy sets" (Springer).
- 4. H.J. Zimmernman, "Fuzzy set theory and application" (Allied Publication in Association with KLUWER).

ण संस्था

(। आराह तनसा ज्यातिन्त

Rajarshi Shahu Mahavidyalaya Latur (Autonomous)

Shiv Chhatrapati Shikshan Sanstha's Rajarshi Shahu Mahavidyalaya, Latur (Autonomous) PG First Year

Extra Credit Activities

Sr.	Course Title	Credits	Hours	
No.			T/P	
1	MOOCs	Min. of 02 credits	Min. of 30 Hrs.	
2	Certificate Courses	Min. of 02 credits	Min. of 30 Hrs.	
3	IIT Spoken	Min. of 02 credits	Min. of 30 Hrs.	
	Tutorial Courses			

Guidelines:

Extra -academic activities

- 1. All extra credits claimed under this heading will require sufficient academic input/ contribution from the students concerned.
- 2. Maximum 04 extra credits in each academic year will be allotted.
- 3. These extra academic activity credits will not be considered for calculation of SGPA/CGPA but will be indicated on the grade card.

Additional Credits for Online Courses:

- 1. Courses only from SWA<mark>YA</mark>M and NPTEL platform are eligible for claiming credits.
- 2. Students should get the consent from the concerned subject Teacher/Mentor/Vice Principal and Principal prior to starting of the course.
- 3. Students who complete such online courses for additional credits will be examined/verified by the concerned mentor/internal faculty member before awarding credits.
- 4. Credit allotted to the course by SWAYAM and NPTEL platform will be considered as it is.

Additional Credits for Other Academic Activities:

- 1. One credit for presentation and publication of paper in International/National/State level seminars/workshops.
- 2. One credit for measurable research work undertaken and field trips amounting to 30 hours of recorded work.
- 3. One credit for creating models in sponsored exhibitions/other exhibits, which are approved by the concerned department.
- 4. One credit for any voluntary social service/Nation building exercise which is in collaboration with the outreach center, equivalent to 30 hours
- 5. All these credits must be approved by the College Committee.

Additional Credits for Certificate Courses:

- 1. Students can get additional credits (number of credits will depend on the course duration) from certificate courses offered by the college.
- 2. The student must successfully complete the course. These credits must be approved by the Course Coordinators.
- 3. Students who undertake summer projects/ internships/ training in institutions of repute through a national selection process, will get 2 credits for each such activity. This must be done under the supervision of the concerned faculty/mentor.

Note:

- 1. The respective documents should be submitted within 10 days after completion of Semester End Examination.
- 2. No credits can be granted for organizing or for serving as office bearers/ volunteers for Inter-Class / Associations / Sports / Social Service activities.
- 3. The office bearers and volunteers may be given a letter of appreciation by the respective staff coordinators. Besides, no credits can be claimed for any services/activities conducted or attended within the college.
- 4. All claims for the credits by the students should be made and approved by the mentor in the same academic year of completing the activity.
- 5. Any grievances of denial/rejection of credits should be addressed to Additional Credits Coordinator in the same academic year.

Shiv Chhatrapati Shikshan Sanstha's Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

Examination Framework

Theory:

40% Continuous Assessment Tests (CATs) and 60% Semester End Examination (SEE)

Course	Marks	CAT & Mid Term Theory				CAT Practical		Best Scored CAT & Mid Term	SEE	Total
		3			4					
1	2	Att.	CAT I	Mid	CAT II	Att.	CAT	5	6	5+6
				Term						
Major/MEC	100	10	10	20	10	-	-	40	60	100
RP/FP	100					-	-	40	60	100
RP	150					-	-	60	90	150

Notes:

- 1. All Internal Exams are compulsory
- 2. Out of 02 CATs best score will be considered
- 3. Mid Term Exam will be conducted by the Exam Section
- 4. Mid Term Exam is of Objective nature (MCQ)
- 5. Semester End Exam is of descriptive in nature (Long & Short Answer)

