

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur

Syllabus (2022-23)

Under CBCS

Three Year Degree Program in Science
Department of Computer Science

UG First Year

Semester I & II

Syllabi Approved by the Board of Studies in Computer Science with effect from June, 2022

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur BoS in Computer Science

- 1. Title of the Program: B. Sc.
- 2. Introduction:

In the first year of under-graduation basic foundation of computer science is required for software development is laid. Fundamentals of computer and Basics of computer programming are introduced in first semester. The programming skills are further strengthened by a course in Programming in Python language and Data Structures are introduced in second semester. These courses provide the preliminary skill set for understand the basic concepts of computer science and solving computational problems. Simultaneously two practical courses are designed to supplement the theoretical training.

In the second year of under-graduation: Operating System and Computer Networks are introduced as core subjects in third semester. The programming skills are further strengthened by a course in Object Oriented Programming using JAVA in fourth semester and Digital Electronics and Microprocessor is also introduced. Simultaneously four practical courses are designed to supplement the theoretical training.

At third year of under-graduation: Two theory course in each semester, among of them one is compulsory and we have given discipline specific electives for other course and practical courses covers the entire topics necessary for building the knowledge base for graduate with one optional subject computer science.

Students can take project in computer science which gives them hands on experience in solving a problem and developing software.

3. Objectives of the Program:

Our objectives state what a graduate with an optional Subject as Computer Science is expected to achieve after completion of graduation.

- 1. To develop problem solving abilities using a computer
- 2. To build the necessary skills abilities for developing computer-based solutions for real problems.
- 3. To take in quality software development practices.
- 4. To prepare necessary knowledge base for research and development in computer Science
- 5. To help student build-up a successful career in Computer Science

4. Program Specific Outcomes:

- 1. Demonstrate the aptitude of Computer Programming and Computer based problem solving skills.
- 2. Ability to link knowledge of computer science with other two chosen auxiliary disciplines of study.
- 3. Ability to present result using different presentation tools.
- 4. Ability to pursue higher studies of specification and to take up technical employment.
- 5. Display the knowledge of appropriate theory, practices and tools for the specification, design, and implementation
- 6. Display ethical code of conduct in usage of internet and Cyber System.
- 7. Ability to operate, manages, deploy, configure computer network, hardware, software operation of an organization.

5. Duration of the Program: Three years

6. Eligibility of the Program for 12th Science with Mathematics

B.Sc. I:

7. Strength of the Students: 20

8. Fees for Course: As per UGC/University/College rules.

9. Period of the Program: As per UGC/University/College rules

10. List of books recommended: Included in syllabus

11. List of Laboratory Software's as per the requirements of syllabus.

Equipment, Instruments,

Measurements etc:

12. Medium of the language: English

13. Structure of the Program: Attached as Annexure 'A'14. Allotment of workload Attached as Annexure 'A'

(Theory/Practical):

15. Intake capacity of students: As per UGC/University/College rules

16. Course duration: Each theory course is of 45 Contract hours

17. To be introduced from: B.Sc. I (CBCS) from June 2022

Chairman Board of StudiesComputer Science

(Dr. R. R. Londhe)

Annexure A

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science

Curriculum Structure with effect from June, 2022 B. Sc. First Year

Semester I & II

	Course Code	Course Title	Lectures		Marks		G 11:
			Per week	Total	C.C.E.	E. S. E	Credits
			Core (Courses			
ter - I	U-COS-141	Fundamentals of Computer (Paper I)	3	45	20	30	02
Semester -	U-COS-142	Basics of Computer Programming With C (Paper II)	3	45	20	30	02
	U-COS-143	Laboratory Course 1	3	45	20	30	01
		Total			15	50	05

Student Stay Hours :9/Week

	Course Code	Course Title	Lect	Lectures		Marks	
			Per week	Total	C.C.E.	E.S.E	Credits
=			Core (Courses			
Semester -	U-COS-242	Introduction to Python Programming	3	45	20	30	02
Se	U-COS-243	Data Structure	3	45	20	30	02
	U-COS-244	Laboratory Course 2	3	45	20	30	01
		Total			To	tal	05

Student Stay Hours :9/Week

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur **Department of Computer Science**

B.Sc. First Year Semester I

Course Title: Fundamentals of Computer (Paper I)

Course Code: U-COS-141 Credits: 2

Total Lectures: 45 Max. Marks: 50

Learning Objectives:

- > To understand the basics of computer system, its architecture, software and Networks.
- > To understand the basic concepts, terminology of IT and familiar with the use of IT
- Adequately explain functioning of computer components.
- > Student will develop a vocabulary of key terms related to the computer and to software program
- Explain role of operating system in computer system and applications of computer networks.

Course Outcomes: After completion of this course students will be able to:

- ➤ Identify the components of a personal computer system
- Demonstrate input/output unit functions
- > Demonstrate window and menu commands and how they are used
- > Demonstrate how to organize files and documents on a USB/hard drive Student will be able to compose, format and edit a word document

➤ Use internet for navigate and search the information and communicate with the people.

Unit No	Contents	No of
		Lectures
UNIT I:	Introduction, Basic structure, ALU, Memory, CPU, I/O devices,	13
Introduction to	Generations of computer, Evolution of computer	Lectures
Computers and	Classification of computers: Notebook computers, personal	
Data	computers, Workstation, micro, mini, mainframe, super	
Representation	computers, Computer Codes.	
	Introduction to number system: Decimal, Binary, Octal,	
	Hexadecimal. Conversions: Binary Arithmetic, Floating point	
	numbers.	
UNIT II: Input /	Input Devices: Keyboard, Point & Draw Devices, Data	10
Output Devices	Scanning Devices, Digitizer, Electronic Card Reader, Voice	Lectures
and Memory	Recognition Devices. Output Devices: Monitor, Printer, Plotter,	
	Screen Image Projector, Voice Response System.	
	Memory: RAM, ROM, PROM, EPROM, EEPROM	
	Base Memory, Extended Memory, Expanded Memory, Cache	
	Memory	
	Storage Devices: Tape, FDD, HDD, CD ROM	
UNIT III:	Definition of Software, Types of Software, Operating System	12
Computer	Main function of operating system, Files and Directories,	Lectures
Software and	Types of OS Introduction to DOS, Introduction to Windows,	

Introduction to	Computer Languages, Structured Programming, what is OOPs?	
OOPs	Basics of OOPs	
UNIT IV:	Definition of computer network	10
Computer	Network types: LAN, MAN and WAN	Lectures
Networks and	Network Topologies: Star, Ring, Hybrid Network	
Introduction to	Wireless Networks, Different Search Tools, Web Browsers,	
Internet	Definition, Uses of Internet	
	Basic Services: Electronic mail, File Transfer Protocol, Telnet	

REFERENCE BOOKS:

- 1. Fundamentals of Computers, V. Rajaraman
- $2. \ \ \, \text{Computers and Common Sense, R. Hunt and Shelly Y.}$
- 3. Computer Fundamentals (5^{Th} Edition), P. K. Sinha

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science B.Sc. First Year Semester I

D.SC. FIISt Teal Semester I

Course Title: Basics of Computer Programming with C Language (Paper II)

Course Code: U-COS-142 Credits: 2

Total Lectures: 45 Max. Marks: 50

Learning Objectives:

- ➤ To develop Problem Solving abilities using computers
- ➤ To teach basic principles of programming Languages
- > To develop skills for writing simple programs using 'C'
- > To gain experience about structured programming
- > To help students to understand the implementation of C language

Course Outcomes: After completion of this course students will be able to:

- > Design an algorithmic solution for a given problem.
- > Draw flowcharts for the solution.
- Write a maintainable C program for a given algorithm.
- ➤ Write well documented and indented program according to coding standards.

Unit No	Contents	
		Lectures
UNIT- I	Algorithm - Definition, Characteristics, Space Complexity,	12
Introduction to	Time Complexity, Problem Solving and Writing Simple	Lectures
Programming	Algorithms, Flow Chart and Its Symbol, Problem Solving with	
	Flowchart	
	History, Compilers and Interpreters, Keywords, Identifiers,	
	Variables Constants – Character, Integer, Float, String, Escape	
	Sequences	
	Data Types – Built-In and User Defined	
	Operators And Expressions, Operator Types, Simple Programs	
	Using printf () and scanf ()	
UNIT- II	Control Statements, Looping Statements, Introduction to	10
Decision	Array- Declaration and Initialization of Arrays, Accessing	Lectures
Control, Loop	Array Elements, Memory Representation of Array, Arrays and	
Control and	Its Types, String Handling Functions .	
Array Handling		
UNIT- III	Introduction, Types of functions, Defining functions,	12
Functions,	Arguments Function prototype,	Lectures
Structure and	Calling function, Returning function results	
Union	Call by value and call by reference, Recursion,	
	Introduction to Structure - Declaration of structure,	
	Accessing Structure Elements, how structure elements are	
	stored? Array of Structure,	
	Introduction to Union, Declaration of Union Accessing Union	
	Elements, how union elements are stored.	

UNIT- IV Storage	Automatic storage class, Register storage class, Static storage	11
Classes, Pointers	class, External storage class, Introduction to Pointers, Pointer	Lectures
and File	declaration, initialization Dereferencing pointers, Pointer	
Management In	arithmetic, Pointer to pointer, Arrays and pointers.	
C		
	Defining and opening a file - closing file I/O operations on	
	files Error handling during I/O operations Random access to	
	files Command line arguments	

REFERENCE BOOKS:

- 1. Let Us C- Yashwant Kanetkar (BPB Publication)
- 2. The C Programming Language, Brian W. Kernighan, Dennis M. Ritchie, PHI Learning
- 3. Programming in ANSI C, E. Balaguruswamy, TataMc- Graw Hill Publishing Co.Ltd.-New Delhi
- 4. How To Solve It by Computer, R G Dromey (PHI Series In Computer Science)

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur B.Sc. First Year Semester I

Course Title: Laboratory Course I

Course Code: U-COS-143 Credits: 1

Total Lectures: 45 Max. Marks: 50

Learning Objectives:

- ➤ To learn the working knowledge of hardware and software of computer.
- > To learn the basic concepts of DOS Operating System.
- > To learn the various features of MS-Office.
- ➤ To write and execute the simple programs in 'C' language.
- ➤ To familiarize the students with the network devices and the internet.

Course Outcomes: After completion of this course students will be able to:

- > Execute DOS commands and create batch file.
- ➤ Demonstrate how to organize files and documents on a USB/hard drive.
- Compose, format and edit a word document
- ➤ Write and execute simple programs in 'C' language
- > Send email messages and navigate and search through the internet and use Google drive

Practical List

- 1. Introduction to DOS (Booting Process, Use of basic commands like date, time, dir, copy con, type, ren etc.)
- 2. Creating a directory structure in DOS (Using commands md, cd, rd, copy) and creation of batch file.
- 3. Introduction to Windows Operating System (File operations using windows explorer, Internet explorer, desktop related operations etc.)
- 4. Introduction to MS -Word.
- 5. Introduction to MS- Power Point.
- 6. Introduction MS-Excel.
- 7. Practical on use of Internet and Google drive.
- 8. Practical on Simple Programs in C Language.
- 9. Program to understand Control Statements & Looping Statements
- 10. Program to understand Arrays in C language
- 11. Program to understand string handling
- 12. Program to understand Functions in C language
- 13. Program to understand Structure & Union in C language
- 14. Program to understand storage classes in C language
- 15. Program to understand pointers in C language
- 16. Programs to understand file handling & Command line arguments in C language.

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur B.Sc. First Year Semester II

Course Title: Introduction to Python Programming (Paper III)

Course Code: U-COS-242 Credits: 2

Total Lectures: 45 Max. Marks: 50

Learning Objectives:

- To acquire programming skills in core Python.
- To be aware about the data types, looping structure
- To be able to know the use of string, lists, dictionary and tuples
- To learn the concepts of Exception handling and file handling
- To acquire Object Oriented Skills in Python
- To use Graphical User Interface for the application development.

Course Outcomes:

After successful completion of this course, students will be able to -

- Write python programs that use strings, lists, tuples and dictionaries
- Demonstrate the concepts of Object-Oriented Programming using python programs
- Write python programs that stores and manipulates data using file handling functions

• Develop Windows applications with Graphical User Interface.

Unit No	Contents	No. of
		Lectures
UNIT I: Getting	Introduction, History, important features, overview of python	11
Started	and installation, Lexical Matters: Lines, Comments, Names and	Lectures
	Tokens, Doc Strings, Simple Program, Identifiers, Reserved	
	Words, Multi-Line Statements, Operators, variables,	
	assignment, Numbers (int, long, float and complex), Strings.	
	Decision and Looping Statements, Introduction to decision	
	statement, If Statement, if—else statement, if-elif-else	
	statement. Introduction to Looping statement, while loop, for	
	loop, nesting of loop, break, continue and pass statement.	
UNIT II:	Strings, Strings and Operators, String Built-in methods, Lists,	12
Sequence:	List type built-in method, Tuples, Special features of Tuples,	Lectures
String, List,	Dictionary, what are exceptions? exceptions in Python,	
Tuples and	Detecting and handling exceptions, raising exception,	
Error, exception	Assertions, Standard exceptions, creating exceptions.	
UNIT III:	What are functions? calling functions, creating functions,	12
Functions, Class	passing functions, formal arguments, positional arguments,	Lectures
and OOPs	default arguments, variable length argument, recursion,	
	Introduction to OOP, Classes, Class attributes, Instances,	
	Instance attribute, building and Method of invocation, Sub	
	classing and derivation, Inheritance, Built-in functions for	
	classes, instances and other objects privacy.	
UNIT IV:	Graphical user interfaces, event-driven programming	10
Graphical	paradigm, tkinter module, creating simple GUI, button, labels,	Lectures
Interfaces		

entry, dialogs, widget attribute - sizes, fonts, color layouts,	
nested frames.	

Reference Book:

- 1. Core Python Programming- Dr. R Nageswara Rao (Dreamtech Press)
- 2. Core Python Programming Wesley J. Chun, Printice Hall PTR, First edition.
- 3. Learning To Program with Python Richard L. Halterman.

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur B.Sc. First Year Semester II

Course Title: Data Structure (Paper IV)

Course Code: U-COS-243 Credits: 2

Total Lectures: 45 Max. Marks: 50

Learning Objectives:

- > To provide the students with solid foundations in the basic concepts of programming: data structures and algorithms.
- ➤ To understand basic computational concepts and elementary data structures
- ➤ To translate well-structured plans into working programs
- > To analyze simple problems involving text and numbers

Course Outcomes: After completion of this course students will be able to:

- > Implement Arrays and Link-list for representation of Data
- ➤ Understand how several fundamental algorithms work particularly those concerned with Stack, Queues, Trees and various Sorting algorithms.
- ➤ Design new algorithms or modify existing ones for new applications and able to analyze the space and time efficiency of most algorithms.

Unit No	Contents	No. of
		Lect.
UNIT- I	Definition, Classification of Data Structure: Primitive and non-	10
Introduction to	primitive. Operations of Data Structures, Introduction to	Lectures
Data Structure	arrays, Representation of Array in Computers Memory Array	
and Arrays	Operations: Traversing, Insertion, Deletion, Searching, Sorting	
UNIT- II Linked	Definition, Components of Linked List, Representation of	13
List	Linked List in Computers Memory	Lectures
	Advantages and Disadvantages of Linked List	
	Types Of Linked List: Singly Linked List, Doubly Linked List,	
	Circular Linked List and Circular Doubly Linked List.	
	Operations On Singly Linked List: Creation, Insertion, Deletion,	
	Search and Display	
UNIT- III Stack	Stack - Definition of Stack, Array Representation of Stack	1
and Queue	Operations on Stack- PUSH And POP	2
	Queue - Definition of Queue, Types of Queues: Simple Queue,	Lectures
	Circular Queue, Double Ended Queue (Deque) Priority Queue,	
	Operations on Queue-Insertion and Deletion, Tower of Hanoi	
	Problem.	
UNIT- IV Tree	Definition: Tree, Binary tree, complete binary tree, Binary	10
and Graph	search tree, Traversal of Binary Tree: Preorder, Inorder and	Lectures
	Postorder. Graphs - Terminology Representation of Graph,	
	Graph Traversals (DFS And BFS)	

REFERENCE BOOKS:

- 1. Data Structure Using C, Yashwant Kanetkar, BPB Publication
- 2. Data Structures Using C, Tenenbaum
- 3. Data Structure, Seymour Lipschutz Outline Series

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur

B.Sc. First Year Semester II Course Title: Laboratory Course II

Course Code: U-COS-244 Credits: 1

Total Lectures: 45 Max. Marks: 50

Learning Objectives:

- ➤ To understand how several fundamental algorithms work particularly those concerned with Stack, Queues, Trees and various Sorting algorithms.
- > To design new algorithms or modify existing ones for new applications and able to analyze the space & time efficiency of most algorithms.
- ➤ To acquire programming skills & Object-Oriented Skills in Python
- > To develop the skills to design applications with graphical user Interfaces in Python

Course Outcomes: After completion of this course students will be able to:

- > To assess how the choices of data structure and algorithm methods impact the performance of program.
- > To solve problems based upon different data structure and also write programs.
- Explain basic principles of Python programming language.
- Implement Object Oriented concepts.
- > Implement GUI applications.

Practical List

- 1. Program to demonstrate Datatypes.
- 2. Program to demonstrate branching & Looping statement
- 3. Program to demonstrate Method & Functions.
 - a. String
 - b. List
 - c. Tuple
 - d. Dictionary
- 4. Program to demonstrate function
 - a. Scope of variable
 - b. Types of arguments
 - c. Recursive Function
- 5. Program to demonstrate class and object
 - a. Types of variables
 - b. Types of Methods
 - c. Constructor & Destructor
- 6. Program to demonstrate inheritance
 - a. Types of Inheritance
 - b. Method / Constructor Overriding
 - c. Super()
- 7. Program to demonstrate GUI
 - a. tkinter module

- b. root window
- 8. Program for traversing an array
- 9. Program for searching an element in an array
- 10. Program for sorting array elements
- 11. Program for inserting elements into an array
- 12. Program for stack implementation
- 13. Program for queue implementation
- 14. Program for Linked List